aspet

PHARMACOLOGICAL REVIEWS
 PHARMACOLOGICAL REVIEWS
 Pharmacology of the Second Messenger, Cyclic
 Guanosine 3',5'-Monophosphate, in the Cerebellum GUANOSI (ASSOLUTER)

COLOGICAL REVIEWS

The American Society for Pharmacology and Experimental Therapeutics
 Guanosine 3',5'-Monophosphate, in the Cerebellum

PAUL L. WOOD*
 COUANOSINE 3',5'-Monophosphate, in the Cere Department of Biological Sciences, Hoechst-Roussel Pharmaceuticals Inc., Somerville, New Jersey
Department of Biological Sciences, Hoechst-Roussel Pharmaceuticals Inc., Somerville, New Jersey

PAUL L. WOOD*
Department of Biological Sciences, Hoechst-Roussel Pharmaceuticals Inc., Somerville, New Jersey

6. Indole m
7. Noradres
• Address reprint requests to
105, Somerville, NJ 08876–125 $\mathbf 1$

I. Introduction

THE cyclic nucleotide cGMP† has been demonstrated
to be an intracellular second messenger system within **1. Introduction** et

THE cyclic nucleotide cGMP† has been demonstrated

to be an intracellular second messenger system within

the cerebellum. High concentrations of cGMP (Chan-I. Introduction
THE cyclic nucleotide cGMP† has been demonstrat
to be an intracellular second messenger system with
the cerebellum. High concentrations of cGMP (Chan-
Palay and Palay, 1979; Rubin and Ferrendelli, 19 THE cyclic nucleotide cGMP† has been demonstrated
to be an intracellular second messenger system within
the cerebellum. High concentrations of cGMP (Chan-
Palay and Palay, 1979; Rubin and Ferrendelli, 1977;
Steiner et al., THE cyclic nucleotide cGMP† has been demonstrated
to be an intracellular second messenger system within
the cerebellum. High concentrations of cGMP (Chan-
Palay and Palay, 1979; Rubin and Ferrendelli, 1977;
Steiner et al. to be an intracellular second messenger system within
the cerebellum. High concentrations of cGMP (Chan-
Palay and Palay, 1979; Rubin and Ferrendelli, 1977;
Steiner et al., 1972; de Vente et al., 1989; Waldman and
Murad, the cerebellum. High concentrations of cGMP (Chan-
Palay and Palay, 1979; Rubin and Ferrendelli, 1977;
Steiner et al., 1972; de Vente et al., 1989; Waldman and
Murad, 1987), of the synthetic enzyme, guanylate cyclase
(Aria Palay and Palay, 1979; Rubin and Ferrendelli, 19
Steiner et al., 1972; de Vente et al., 1989; Waldman
Murad, 1987), of the synthetic enzyme, guanylate cycl
(Ariano et al., 1982; Waldman and Murad, 1987; Zwi
et al., 1981), Steiner et al., 1972; de Vente et al., 1989; Waldman and
Murad, 1987), of the synthetic enzyme, guanylate cyclase
(Ariano et al., 1982; Waldman and Murad, 1987; Zwiller
et al., 1981), of the degradative enzyme cGMP phospho Murad, 1987), of the synthetic enzyme, guanylate cycle (Ariano et al., 1982; Waldman and Murad, 1987; Zwillet al., 1981), of the degradative enzyme cGMP phosphetics.
Het al., 1981), of the degradative enzyme cGMP phospheti (Ariano et al., 1982; Waldman and Murad, 1987; Zwiller
et al., 1981), of the degradative enzyme cGMP phospho-
diesterase (Greenberg et al., 1978; Uzunov and Weiss,
1972), and of cGMP-dependent protein kinases (Schli-
chte diesterase (Greenberg et al., 1978; Uzunov and Weiss, 1972), and of cGMP-dependent protein kinases (Schlichter et al., 1980) have been found to be present in the cerebellum. Additionally, there have been a large number of diesterase (Greenberg et al., 1978; Uzunov and Weiss
1972), and of cGMP-dependent protein kinases (Schlichter et al., 1980) have been found to be present in the
cerebellum. Additionally, there have been a large number
of p 1972), and of cGMP-dependent protein kinases (Schlichter et al., 1980) have been found to be present in the cerebellum. Additionally, there have been a large number of pharmacological analyses of drug effects both on cereb chter et al., 1980) have been found to be present in the cerebellum. Additionally, there have been a large number of pharmacological analyses of drug effects both on cerebellar cGMP levels and on the associated enzymic ma cerebellum. Additionally, there have been a large number of pharmacological analyses of drug effects both on cerebellar cGMP levels and on the associated enzymic machinery of this second messenger. It is the purpose of thi of pharmacological analyses of drug effects both on cerebellar cGMP levels and on the associated enzymic machinery of this second messenger. It is the purpose of continuity to critically assess our current interpretations bellar cGMP levels and on the associated enzymic machinery of this second messenger. It is the purpose of this review to critically assess our current interpretations of where this cGMP is generated and to examine the tran chinery of this second messenger. It is the purpose of this review to critically assess our current interpretations of where this cGMP is generated and to examine the transducer mechanisms that are coupled to cGMP for-
mat this review to critically assess our current interpretations and
of where this cGMP is generated and to examine the
transducer mechanisms that are coupled to cGMP for-
mation. The neurochemical anatomy of the cerebellar
c of where this cGMP is generated and to examine the transducer mechanisms that are coupled to cGMP for-
mation. The neurochemical anatomy of the cerebellar routine
circuits and their afferents also will be reviewed when
re mation. The neurochemical anatomy of the cerebellar circuits and their afferents also will be reviewed when relevant to an understanding of the effects of drugs on cerebellar cGMP levels.

II. Methodology

A. Microwave Tissue *Fixation* For rapid stabilization of postmortem changes in D .

Merowave Tissue Fixation drug

For rapid stabilization of postmortem changes in D .

HMP levels, immersion in liquid nitrogen (Kimura et II. Methodology
A. Microwave Tissue Fixation
For rapid stabilization of postmortem changes in
cGMP levels, immersion in liquid nitrogen (Kimura et
al., 1974) or "nitrogen brain blowing" (Guidotti et al., A. Microwave Tissue Fixation

For rapid stabilization of postmortem changes in

cGMP levels, immersion in liquid nitrogen (Kimura et

al., 1974) or "nitrogen brain blowing" (Guidotti et al.,

1974) were first used. However 1974) were first used. However, these methods makes in D .

1974) or "nitrogen brain blowing" (Guidotti et al., D

1974) were first used. However, these methods make fine

1987) were first used. However, these methods For rapid stabilization of postmortem changes in cGMP levels, immersion in liquid nitrogen (Kimura e al., 1974) or "nitrogen brain blowing" (Guidotti et al. 1974) were first used. However, these methods make fine dissectio al., 1974) or "nitrogen brain blowing" (Guidotti et al., P_U
1974) were first used. However, these methods make fine
dissection of brain regions difficult or impossible. Sub-
sequently, a number of laboratories demonstra 1974) were first used. However, these methods make fine dissection of brain regions difficult or impossible. Subsequently, a number of laboratories demonstrated the ease and utility of focused microwave fixation for the de dissection of brain regions difficult or impossible. Subsequently, a number of laboratories demonstrated the ease and utility of focused microwave fixation for the determination of cerebellar cGMP levels (Dodson et al., 19 sequently, a number of laboratories demonstrated
ease and utility of focused microwave fixation for
determination of cerebellar cGMP levels (Dodson et
1979; Guidotti et al., 1975; Jones and Stavinoha, 19
Mao et al., 1974b; **ease and utility of focused microwave fixation for the efficial determination of cerebellar cGMP levels (Dodson et al., pyrilies, 1979; Guidotti et al., 1975; Jones and Stavinoha, 1977; How Mao et al., 1974b; Wood et al.** determination of cerebellar cGMP levels (Dodson et al., p. 1979; Guidotti et al., 1975; Jones and Stavinoha, 1977; Mao et al., 1974b; Wood et al., 1982). In many laboratometries, this method of tissue fixation is highly a Mao et al., 1974b; Wood et al., 1982). In many laboratories, this method of tissue fixation is highly amenable to subsequent microdissection of brain regions and yields basal cGMP levels in the range of $1-3$ pmol/mg prot ries, this method of tissue fixation is highly amenable to
subsequent microdissection of brain regions and yields
basal cGMP levels in the range of 1-3 pmol/mg protein.
B. Tissue Microdissection
Microdissection of the cere

bsequent microdissection of brain regions and yields
sal cGMP levels in the range of $1-3$ pmol/mg protein.
Tissue Microdissection
Microdissection of the cerebellum involved dissection (
the cortex, vermis and deep cerebe basal cGMP levels in the range of 1-3 pmol/mg protein.

B. Tissue Microdissection

methodissection of the cerebellum involved dissection ("

of the cortex, vermis and deep cerebellar nuclei (Biggio (tat

tAbbreviations: c Microdissection of the cerebellum involved dissectively
the cortex, vermis and deep cerebellar nuclei (Big;
tAbbreviations: cGMP, cyclic guanosine 3',5'-monophosphand.

Microdissection of the cerebellum involved dissection
of the cortex, vermis and deep cerebellar nuclei (Biggio
tabbreviations: cGMP, cyclic guanosine 3',5'-monophosphate;
NMDA, N-methyl-D-aspartate; TRH, thyrotropin-releas of the cortex, vermis and deep cerebellar nuclei (Biggio (the cortex, cGMP, cyclic guanosine $3',5'$ -monophosphate; NMDA, N-methyl-D-aspartate; TRH, thyrotropin-releasing hormone; GABA, γ -aminobutyric acid; EAA, excitat oxide; PCP, phencyclidine; CNS, central nervous system; CO-1996.

NMDA, N-methyl-D-aspartate; TRH, thyrotropin-releasing hormon

GABA, γ -aminobutyric acid; EAA, excitatory amino acid; NO, nitroxide; PCP, phencyclidine; †Abbreviations: cGMP, cyclic guanosine $3',5'$ -monople NMDA, N-methyl-D-aspartate; TRH, thyrotropin-releasing IGABA, γ -aminobutyric acid; EAA, excitatory amino acid; Noride; PCP, phencyclidine; CNS, central nervous syst NMDA, N-methyl-D-aspartate; TRH, thyrotropin-releasing GABA, γ -aminobutyric acid; EAA, excitatory amino acid; Noride; PCP, phencyclidine; CNS, central nervous system; CC
cystokinin; DN-1417, γ -butyrolactone- γ -carb acid.

et al., 1977a; Guidotti et al., 1975; Rubin and Ferrendelli, 1977). Of the drugs tested to date, parallel changes in cGMP levels occurred in all 3 regions, except in the case et al., 1977a; Guidotti et al., 1975; Rubin and Ferrendelli,
1977). Of the drugs tested to date, parallel changes in
cGMP levels occurred in all 3 regions, except in the case et al., 1977a; Guidotti et al., 1975; Rubin and Ferrendelli,
1977). Of the drugs tested to date, parallel changes in
cGMP levels occurred in all 3 regions, except in the case
of muscarinic agonist administration, which inc of muscarinic agonist administration, which increased only vermal cGMP levels (Rubin and Ferrendelli, 1977). et al., 1977a; Guidotti et al., 1975; Rubin and Ferrendelli, 1977). Of the drugs tested to date, parallel changes in cGMP levels occurred in all 3 regions, except in the case of muscarinic agonist administration, which inc 1977). Of the drugs tested to date, parallel changes in cGMP levels occurred in all 3 regions, except in the case of muscarinic agonist administration, which increased only vermal cGMP levels (Rubin and Ferrendelli, 1977). cGMP levels occurred in all 3 regions, except in the case
of muscarinic agonist administration, which increased
only vermal cGMP levels (Rubin and Ferrendelli, 1977).
Further microdissection of cell layers in the cerebellu of muscarinic agonist administration, which increased
only vermal cGMP levels (Rubin and Ferrendelli, 1977).
Further microdissection of cell layers in the cerebellum
indicated that generally 80% of the changes in cGMP
leve only vermal cGMP levels (Rubin and Ferrendelli, 1977).
Further microdissection of cell layers in the cerebellum
indicated that generally 80% of the changes in cGMP
levels occurs in the molecular layer and 20% in the
granul indicated that generally 80% of the changes in cGMP levels occurs in the molecular layer and 20% in the granular layer (Rubin and Ferrendelli, 1977). However, not all drug effects have been monitored in such anatomical det mot all drug effects have been monitored in such anatomical detail, indicating that this may not always be the case.
 C. Routes of Drug Administration

The in vivo evaluation of drug effects on cerebellar

Indicating that this may not always be the
se.
Routes of Drug Administration
The in vivo evaluation of drug effects on cerebellar
IMP is most often determined with parenteral drug case.
C. Routes of Drug Administration
The in vivo evaluation of drug effects on cerebellar
cGMP is most often determined with parenteral drug
administration. However, when drug bioavailability is an C. Routes of Drug Administration
The in vivo evaluation of drug effects on cerebellar
cGMP is most often determined with parenteral drug
administration. However, when drug bioavailability is an
issue or when the site(s) of C. *Routes of Drug Administration*
The in vivo evaluation of drug effects on cerebellar
cGMP is most often determined with parenteral drug
administration. However, when drug bioavailability is an
issue or when the site(s) The in vivo evaluation of drug effects on cerebellar
cGMP is most often determined with parenteral drug
administration. However, when drug bioavailability is an
issue or when the site(s) of drug action is being studied,
th cGMP is most often determined with parenteral drug
administration. However, when drug bioavailability is an
issue or when the site(s) of drug action is being studied,
then direct intracranial injections are performed. Thes administration. However, when drug bioavailability is an issue or when the site(s) of drug action is being studied, then direct intracranial injections are performed. These routes include intraventricular (Danysz et al., 1 issue or when the site(s) of drug action is being studied,
then direct intracranial injections are performed. These
routes include intraventricular (Danysz et al., 1989;
McCaslin and Morgan, 1986b), intracisternal (Wood et then direct intracranial injections are performed. These
routes include intraventricular (Danysz et al., 1989;
McCaslin and Morgan, 1986b), intracisternal (Wood et
al., 1982), and direct intracerebellar (Rao et al., 1990b, routes include intraventricular (Danysz et al., 1989;
McCaslin and Morgan, 1986b), intracisternal (Wood et
al, 1982), and direct intracerebellar (Rao et al., 1990b,c;
Wood et al., 1987, 1988b, 1989a,d, 1990a) injections. D al, 1982), and direct intracerebellar (Rao et al., 1990b,c; Wood et al., 1987, 1988b, 1989a,d, 1990a) injections. Drug injections into extracerebellar brain regions, from which afferent pathways originate, have also been u Wood et al., 1987, 1988b, 1989a,d, 1990a) injections. Drug
injections into extracerebellar brain regions, from which
afferent pathways originate, have also been used to define
drug effects on cerebellar inputs (section V.B *afferent pathways originate, have also been used to define drug effects on cerebellar inputs (section V.B.1).*
D. Lesions/Mutant Mice
The relative roles of afferent fiber pathways as well as

Purkinje and granule cell populations in cGMP responses to drug treatments have been investigated by the D. Lesions/Mutant Mice
The relative roles of afferent fiber pathways as well as
Purkinje and granule cell populations in cGMP re-
sponses to drug treatments have been investigated by the
use of both chemical lesions and ge D. Lesions/Mutant Mice

The relative roles of afferent fiber pathways as well as

Purkinje and granule cell populations in CGMP re-

sponses to drug treatments have been investigated by the

use of both chemical lesions an The relative roles of afferent fiber pathways as well as
Purkinje and granule cell populations in cGMP re-
sponses to drug treatments have been investigated by the
use of both chemical lesions and genetically mutant mice.
 Purkinje and granule cell populations in cGMP
sponses to drug treatments have been investigated by
use of both chemical lesions and genetically mutant m
In the case of the climbing fiber system (section I
efficient lesions sponses to drug treatments have been investigated by the use of both chemical lesions and genetically mutant mice.
In the case of the climbing fiber system (section IV), efficient lesions can be obtained with the toxin 3-a use of both chemical lesions and genetically mutant mice.
In the case of the climbing fiber system (section IV),
efficient lesions can be obtained with the toxin 3-acetyl-
pyridine (Guidotti et al., 1975; McBride et al., 1 In the case of the climbing fiber system (section IV),
efficient lesions can be obtained with the toxin 3-acetyl-
pyridine (Guidotti et al., 1975; McBride et al., 1978).
However, although this lesion is easily created in r efficient lesions ca
pyridine (Guidott
However, although
our hands, this to
extremely lethal.
For the selectiv ridine (Guidotti et al., 1975; McBride et al., 1978)
owever, although this lesion is easily created in rats,
r hands, this toxin is not useful in mice because it
tremely lethal.
For the selective depletion of cell populati However, although this lesion is easily created in rats, in
our hands, this toxin is not useful in mice because it is
extremely lethal.
For the selective depletion of cell populations, virus-
induced granule cell loss in t

our hands, this toxin is not useful in mice because it is
extremely lethal.
For the selective depletion of cell populations, virus-
induced granule cell loss in the hamster cerebellum was
reported (Young et al., 1974). For extremely lethal.
For the selective depletion of cell populations, virus-
induced granule cell loss in the hamster cerebellum was
reported (Young et al., 1974). For mice, a number of
strains are available with selective lo For the selective depletion of cell populations, virus-
induced granule cell loss in the hamster cerebellum was
reported (Young et al., 1974). For mice, a number of
strains are available with selective losses of granule
(" induced gram

reported (Y

strains are

("Weaver m

(table 1).

F G (*Example 3* are available with selective losses of granule ("Weaver mouse") and Purkinje ("Nervous mouse") cells (table 1).
 E. Confounding Variables

1. Motor activity. The issue has been raised that many drug effects on cerebellar cGMP may result from changes in the motor state of an animal. The basis for this (table 1).

E. Confounding Variables

1. Motor activity. The issue has been raised that many

drug effects on cerebellar cGMP may result from changes

in the motor state of an animal. The basis for this E. Confounding Variables
1. Motor activity. The issue has been raised that many
drug effects on cerebellar cGMP may result from changes
in the motor state of an animal. The basis for this
hypothesis was the observation of E. Confounding variables
1. Motor activity. The issue has been raised that many
drug effects on cerebellar cGMP may result from changes
in the motor state of an animal. The basis for this
hypothesis was the observation of

PHARMACOLOGICAL REVIEWS

aspet

cGMP levels in the cerebella of rats trained to run in an cGMP is not increased by all agents that potentiate
activity wheel (Meyerhoff et al., 1979). Similarly, rats dopaminergic transmission and increase motor activity Guanylate cyclase Normal

CGMP levels in the cerebella of rats trained to run in an

activity wheel (Meyerhoff et al., 1979). Similarly, rats

trained to swim a 2.5-m course possessed elevated cerecGMP levels in the cerebella of rats trained to run in a
activity wheel (Meyerhoff et al., 1979). Similarly, rat
trained to swim a 2.5-m course possessed elevated cere
bellar cGMP levels; this effect was blocked by competi cGMP levels in the cerebella of rats trained to run in
activity wheel (Meyerhoff et al., 1979). Similarly, 1
trained to swim a 2.5-m course possessed elevated ce
bellar cGMP levels; this effect was blocked by comp
tive NMD cGMP levels in the cerebella of rats trained to run in an cGlackivity wheel (Meyerhoff et al., 1979). Similarly, rats doptrained to swim a 2.5-m course possessed elevated cere-
bellar cGMP levels; this effect was blocked b activity wheel (Meyerhoff et al., 1979). Similarly, rats
trained to swim a 2.5-m course possessed elevated cere-
bellar cGMP levels; this effect was blocked by competi-
tive NMDA (section III.A) antagonists (McCaslin and
M trained to swim a 2.5-m course possessed elevated cerebreals bellar cGMP levels; this effect was blocked by competitive NMDA (section III.A) antagonists (McCaslin and dMorgan, 1986a–c). Pharmacological studies using motor bellar cGMP levels; this effect was blocked by competitive NMDA (section III.A) antagonists (McCaslin and Morgan, 1986a–c). Pharmacological studies using motor stimulants also have demonstrated a role for an enhanced motor tive NMDA (section III.A) antagonists (McCaslin and
Morgan, 1986a–c). Pharmacological studies using motor
stimulants also have demonstrated a role for an enhanced
motor activity in the increases in cerebellar cGMP in-
duce Morgan, 1986a–c). Pharmacological studies using motor the stimulants also have demonstrated a role for an enhanced expotor activity in the increases in cerebellar cGMP included by both apomorphine and TRH (section V.B.3) stimulants also have demonstrated a role for an enhanced
motor activity in the increases in cerebellar cGMP in-
duced by both apomorphine and TRH (section V.B.3)
but not by harmaline (Lundberg et al., 1979). In these
studi motor activity in the increases in cerebellar cGMP in-
duced by both apomorphine and TRH (section V.B.3) n
but not by harmaline (Lundberg et al., 1979). In these p
studies, the effects of TRH and apomorphine were sig-
nifi duced by both apomorphine and TRH (section V.B
but not by harmaline (Lundberg et al., 1979). In the
studies, the effects of TRH and apomorphine were s
nificantly attenuated, but not absent, in rats paralyz
with *d*-tubocur but not by harmaline (Lundberg et al., 1979). In these plat studies, the effects of TRH and apomorphine were sig-
nificantly attenuated, but not absent, in rats paralyzed return of a berg et al., 1979). In paralyzed animal studies, the effects of TRH and apomorphine were significantly attenuated, but not absent, in rats paralyze
with *d*-tubocurarine and mechanically ventilated (Lund
berg et al., 1979). In paralyzed animals, the decreases is mificantly attenuated, but not absent, in rats paralyze
with d-tubocurarine and mechanically ventilated (Lund
berg et al., 1979). In paralyzed animals, the decreases i:
GMP induced by the depressants pentobarbital, halo
th th *d*-tubocurarine and mechanically ventilated (Lund-
rg et al., 1979). In paralyzed animals, the decreases in THOF induced by the depressants pentobarbital, halo-
ane, and ethanol were also reduced (section III.B.5). 19

berg et al., 1979). In paralyzed animals, the decreases in cGMP induced by the depressants pentobarbital, halo-
thane, and ethanol were also reduced (section III.B.5).
Thus, it appears that enhanced motor activity can
resu cGMP induced by the depressants pentobarbital, halo-
thane, and ethanol were also reduced (section III.B.5).
Thus, it appears that enhanced motor activity can
result in increased cerebellar cGMP levels and vice versa.
Howe thane, and ethanol were also reduced (section III.B.5).
Thus, it appears that enhanced motor activity ca
result in increased cerebellar cGMP levels and vice verse
However, these parameters are not strictly correlated
the r Thus, it appears that enhanced motor activity c
result in increased cerebellar cGMP levels and vice ver
However, these parameters are not strictly correlat
the recovery of locomotor activity after pentobarbi
treatment is 3 result in increased cerebellar cGMP levels and vice versa.
However, these parameters are not strictly correlated:
the recovery of locomotor activity after pentobarbital
treatment is 30–60 min, whereas the recovery of cereb result in increased cerebellar cGMP levels and vice versa.

However, these parameters are not strictly correlated:

the recovery of locomotor activity after pentobarbital

treatment is 30–60 min, whereas the recovery of ce the recovery of locomotor activity after pentobarbital
treatment is 30–60 min, whereas the recovery of cerebel-
lar cGMP levels is 120–150 min (Morgan and Pfeil, 1984;
section III.B.5); genetically dystonic rats which have treatment is 30–60 min, whereas the recovery of cerebellar cGMP levels is 120–150 min (Morgan and Pfeil, 1984;
section III.B.5); genetically dystonic rats which have
normal motor activity patterns possess cerebellar cGMP
l lar cGMP levels is 120–150 min (Morgan and Pfeil, 1984;
section III.B.5); genetically dystonic rats which have
normal motor activity patterns possess cerebellar cGMP
levels that are 33% of that of control rats (Lorden et a section III.B.5); genetically dystonic rats which have normal motor activity patterns possess cerebellar cGMP levels that are 33% of that of control rats (Lorden et al., 1985); whereas C57Bl/6J mice have concomitant incre normal motor activity patterns possess cerebellar cGMP in levels that are 33% of that of control rats (Lorden et al., in 1985); whereas C57Bl/6J mice have concomitant increases in motor activity and cerebellar cGMP levels levels that are 33% of that of control rats (Lorden et al., 1985); whereas C57Bl/6J mice have concomitant increases in motor activity and cerebellar cGMP levels after morphine treatment and DBA mice have decreased cerebell 1985); whereas C57Bl/6J mice have concomitant increases in motor activity and cerebellar cGMP levels
after morphine treatment and DBA mice have decreased
cerebellar cGMP in the absence of changes in motor
activity (Racagni

by (Racagni et al., 1979; section V.B.5); cerebe.
 after treatment with dopaminergics (Breese et al., 1979a)
 after treatment with dopaminergics (Breese et al., 1979a)

TABLE 2 Lack of correlation of changes in motor activity and cerebellar cGMP after treatment with dopaminergics (Breese et al., 1979a)			
Drug	Locomotor activity (-fold of control)	Cerebellar cGMP (-fold of control)	
Amantadine	$3.3*$	$1.25*$	
Piribedil	$4.1*$	0.73	
Lergotrile	$4.7*$	0.97	
Apomorphine	$8.4*$	$3.13*$	
d-Amphetamine	$10.4*$	$3.52*$	
Methylphenidate	$10.7*$	$3.18*$	

 $* p < 0.05$.

Schmidt and Nadi, 1977
CGMP is not increased by all agents that potentiate
dopaminergic transmission and increase motor activity
(Breese et al., 1979a; section V.B.1; table 2). eGMP is not increased by all agents that proportions and increase moto
(Breese et al., 1979a; section V.B.1; table 2).
2. Stress. A further complication in the art ² AMP is not increased by all agents that potentiate paminergic transmission and increase motor activity irreese et al., 1979a; section V.B.1; table 2).
2. *Stress.* A further complication in the analysis of ug and behav cGMP is not increased by all agents that potentiate
dopaminergic transmission and increase motor activity
(Breese et al., 1979a; section V.B.1; table 2).
2. Stress. A further complication in the analysis of
drug and behavi

dopaminergic transmission and increase motor activity

(Breese et al., 1979a; section V.B.1; table 2).

2. Stress. A further complication in the analysis of

drug and behavioral effects on cerebellar cGMP levels is

the po (Breese et al., 1979a; section V.B.1; table 2).

2. Stress. A further complication in the analysis of

drug and behavioral effects on cerebellar cGMP levels is

the potential for a significant stress component in any

expe 2. Stress. A further complication in the analysis drug and behavioral effects on cerebellar cGMP levels is the potential for a significant stress component in an experimental paradigm. Indeed, elevated cerebellar cGMP leve drug and behavioral effects on cerebellar cGMP levels is
the potential for a significant stress component in any
experimental paradigm. Indeed, elevated cerebellar
cGMP levels have been measured in fighting mice (Din-
nend the potential for a significant stress component in any
experimental paradigm. Indeed, elevated cerebellar
cGMP levels have been measured in fighting mice (Din-
nendahl, 1975), in mice stressed in ice water or on a hot
pl experimental paradigm. Indeed, elevated cerebellar
cGMP levels have been measured in fighting mice (Din-
nendahl, 1975), in mice stressed in ice water or on a hot
plate (Dinnendahl, 1975), and in rats maintained at 4°C
(Ma cGMP levels have been measured in fighting mice (Din-
nendahl, 1975), in mice stressed in ice water or on a hot
plate (Dinnendahl, 1975), and in rats maintained at 4°C
(Mao et al., 1974a). In all cases, these elevations i plate (Dinnendahl, 1975), and in 1
(Mao et al., 1974a). In all cases, the
returned to normal between 15 and
of acute or chronic stress exposure.
The pharmacology of stress-inc (Mao et al., 1974a). In all cases, these elevations in cGMP returned to normal between 15 and 30 min after cessation of acute or chronic stress exposure.
The pharmacology of stress-induced cGMP increases also has been inv

(Mao et al., 1974a). In all cases, these elevations in cGMP
returned to normal between 15 and 30 min after cessation
of acute or chronic stress exposure.
The pharmacology of stress-induced cGMP increases
also has been inve returned to normal between 15 and 30 min after cessation
of acute or chronic stress exposure.
The pharmacology of stress-induced cGMP increases
also has been investigated (Dinnendahl and Gumulka,
1977). These increases are of acute or chronic stress exposure.
The pharmacology of stress-induced cGMP increase
also has been investigated (Dinnendahl and Gumulka
1977). These increases are blocked by pretreatment with
pentobarbital, diazepam, chlo The pharmacology of stress-induced cGMP increases
also has been investigated (Dinnendahl and Gumulka,
1977). These increases are blocked by pretreatment with
pentobarbital, diazepam, chlorpromazine, haloperidol,
aminooxyac also has been investigated (Dinnendahl and Gumulka,
1977). These increases are blocked by pretreatment with
pentobarbital, diazepam, chlorpromazine, haloperidol,
aminooxyacetic acid, reserpine, clonidine, and high doses
of 1977). These increases are blocked by pretreatment with pentobarbital, diazepam, chlorpromazine, haloperido aminooxyacetic acid, reserpine, clonidine, and high dose of propranolol (no stereospecificity). In contrast, acut pentobarbital, diazepam, chlorpromazine, haloperid
aminooxyacetic acid, reserpine, clonidine, and high dos
of propranolol (no stereospecificity). In contrast, acu
stress effects on cGMP were not altered by pretreatme
with aminooxyacetic acid, reserpine, clonidine, and high doses
of propranolol (no stereospecificity). In contrast, acute
stress effects on cGMP were not altered by pretreatment
with phentolamine, atropine, diphenhydramine, cypr of propranolol (no stereospecificity). In contrast, ac
stress effects on cGMP were not altered by pretreatm
with phentolamine, atropine, diphenhydramine, cyp
heptadine, or indomethacin (Dinnendahl and Gumul
1977). These da stress effects on cGMP were not altered by pretreatme
with phentolamine, atropine, diphenhydramine, cypi
heptadine, or indomethacin (Dinnendahl and Gumull
1977). These data lead to the conclusion that dopar
nergic and GABA induced increases in cerebellar cGMP (Wood et al., 1984a), whereas noradrenergic, serotonergic, histaminheptadine, or indomethacin (Dinnendahl and Gumu
1977). These data lead to the conclusion that dopa
nergic and GABAergic pathways are involved in str
induced increases in cerebellar cGMP (Wood et
1984a), whereas noradrenerg 1977). These data lead to the conclusion that dopaminergic and GABAergic pathways are involved in stress induced increases in cerebellar cGMP (Wood et al. 1984a), whereas noradrenergic, serotonergic, histaminergic, and cho nergic and GABAergic pathways are involved in stress-
induced increases in cerebellar cGMP (Wood et al.,
1984a), whereas noradrenergic, serotonergic, histamin-
ergic, and cholinergic pathways are not. Additionally,
enhance induced increases in cerebellar cGMP
1984a), whereas noradrenergic, serotone
ergic, and cholinergic pathways are no
enhanced prostaglandin synthesis is not
the cascade leading to increased cGMP.
The role of dopaminergic an 84a), whereas noradrenergic, serotonergic, histamin-
gic, and cholinergic pathways are not. Additionally,
hanced prostaglandin synthesis is not a component of
e cascade leading to increased cGMP.
The role of dopaminergic a enhanced prostaglandin synthesis is not a component of
the cascade leading to increased cGMP.
The role of dopaminergic and GABAergic pathways in
stress-induced cerebellar cGMP increases is further re-

activity (Racagni et al., 1979; section V.B.5); cerebellar

The role of dopaminergic and GABAergic pathways in

TABLE 2

Lack of correlation of changes in motor activity and cerebellar cGMP

after treatment with dopaminerg ergic, and cholinergic pathways are not. Additionally,
enhanced prostaglandin synthesis is not a component of
the cascade leading to increased cGMP.
The role of dopaminergic and GABAergic pathways in
stress-induced cerebel the cascade leading to increased cGMP.
The role of dopaminergic and GABAergic pathways in
stress-induced cerebellar cGMP increases is further re-
flected by studies of rats habituated to handling (Corda
et al., 1980). In t The role of dopaminergic and GABAergic pathways in
stress-induced cerebellar cGMP increases is further re-
flected by studies of rats habituated to handling (Corda
et al., 1980). In these animals, the basal cerebellar cGMP stress-induced cerebellar cGMP increases is further reflected by studies of rats habituated to handling (Corde
et al., 1980). In these animals, the basal cerebellar cGME
levels were 30% of naive rats and could not be furth flected by studies of rats habituated to handling (Corda et al., 1980). In these animals, the basal cerebellar cGMP levels were 30% of naive rats and could not be further decreased by the dopamine antagonist haloperidol (s et al., 1980). In these animals, the basal cerebellar cGMP
levels were 30% of naive rats and could not be further
decreased by the dopamine antagonist haloperidol (sec-
tion V.B.1) or the GABAergics diazepam and muscimol
(decreased by the dopamine antagonist haloperidol (section V.B.1) or the GABAergics diazepam and muscimol (section III.B.1). In contrast, apomorphine (section V.B.1) still increased cerebellar cGMP in these animals habituat decreased by the dopamine antagonist halop
tion V.B.1) or the GABAergics diazepam and
(section III.B.1). In contrast, apomorphin
V.B.1) still increased cerebellar cGMP in the
habituated to handling (Corda et al., 1980).
3. by V.B.1) or the GABAergics diazepam and muscimol
action III.B.1). In contrast, apomorphine (section
B.1) still increased cerebellar cGMP in these animals
bituated to handling (Corda et al., 1980).
3. Respiratory depressio (section III.B.1). In contrast, apomorphine (section V.B.1) still increased cerebellar cGMP in these animals habituated to handling (Corda et al., 1980).
3. Respiratory depression. It has been demonstrated in rats paralyz

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

For depression should interpret their data with some actuation.

The study of cerebellar cGMP levels in vivo offers the some

tential to determine drug effects on cerebellar afferent au caution.

F. In Vitro Studies

The study of cerebellar cGMP levels in vivo offers the

potential to determine drug effects on cerebellar afferent

pathways, to examine drug effects in the presence of in F. In Vitro Studies

The study of cerebellar cGMP levels in vivo offers the

potential to determine drug effects on cerebellar afferent

pathways, to examine drug effects in the presence of in

vivo neuronal firing pattern F. In vitro studies
The study of cerebellar cGMP levels in vivo offers the
potential to determine drug effects on cerebellar afferent
pathways, to examine drug effects in the presence of in
wivo neuronal firing patterns, The study of cerebellar cGMP levels in vivo offers the
potential to determine drug effects on cerebellar afferent
pathways, to examine drug effects in the presence of in
wivo neuronal firing patterns, and to determine dru potential to determine drug effects on cerebellar afferent
pathways, to examine drug effects in the presence of in
vivo neuronal firing patterns, and to determine drug
bioavailability. However, when the purpose of a study pathways, to examine drug effects in the presence of in Her
vivo neuronal firing patterns, and to determine drug has
bioavailability. However, when the purpose of a study is
trance define mechanism(s) and site(s) of actio vivo neuronal firing patterns, and to determine drug has
bioavailability. However, when the purpose of a study is tra
to define mechanism(s) and site(s) of action of a drug, 198
investigators often integrate such in vivo bioavailability. Howev
to define mechanism
investigators often int
vitro evaluations in w
more easily regulated.
1. Cerebellar slices. define mechanism(s) and site(s) of action of a drug, 1
vestigators often integrate such in vivo studies with in
oro evaluations in which experimental variables can be
ore easily regulated.
1. Cerebellar slices. Studie

investigators often integrate such in vivo studies with in vitro evaluations in which experimental variables can b
more easily regulated.
1. Cerebellar slices. Studies of tissue slices obtainee
from immature rat brain have vitro evaluations in which experimental variables can be

more easily regulated. $\begin{array}{c} \text{G} \\ \text{I} \end{array}$. Cerebellar slices. Studies of tissue slices obtained

from immature rat brain have demonstrated that cere-

bella more easily regulated. GA

1. Cerebellar slices. Studies of tissue slices obtained

from immature rat brain have demonstrated that cere-

bellar slices generate the greatest concentration of

cGMP, paralleling in vivo obs 1. Cerebellar slices. Studies of tissue slices obtained 11
from immature rat brain have demonstrated that cere-
bellar slices generate the greatest concentration of
cGMP, paralleling in vivo observations (Palmer and
Duszy from immature rat brain have demonstrated that cere-
bellar slices generate the greatest concentration of
cGMP, paralleling in vivo observations (Palmer and
Duszynski, 1975). The higher levels of cGMP in this
hrain region bellar slices generate the greatest concentration of cGMP, paralleling in vivo observations (Palmer and Duszynski, 1975). The higher levels of cGMP in this brain region appear to result from lower levels of cGMP phosphodie 1978). Duszynski, 1975). The higher levels of cGMP in this
brain region appear to result from lower levels of cGMP
phosphodiesterase in the cerebellum (Greenberg et al.,
1978).
A number of investigators have investigated the ac-

brain region appear to result from lower levels of cGM
phosphodiesterase in the cerebellum (Greenberg et a
1978).
A number of investigators have investigated the a
tions of EAA agonists (section III.B.6) on cGMP gener-
ati phosphodiesterase in the cerebellum (Greenberg et al., 1978).

A number of investigators have investigated the ac-

tions of EAA agonists (section III.B.6) on cGMP gener-

ation in cerebellar slices (Garthwaite and Brodbel 1978).

A number of investigators have investigated the ac-

tions of EAA agonists (section III.B.6) on cGMP gener-

ation in cerebellar slices (Garthwaite and Brodbelt, 1989;

Garthwaite, 1982; Schmidt and Nadi, 1977; Sc A number of investigators have investigated the
tions of EAA agonists (section III.B.6) on cGMP gen
ation in cerebellar slices (Garthwaite and Brodbelt, 19
Garthwaite, 1982; Schmidt and Nadi, 1977; Schmidt
al., 1977). Thes tions of EAA agonists (section III.B.6) on cGMP generation in cerebellar slices (Garthwaite and Brodbelt, 1989;
Garthwaite, 1982; Schmidt and Nadi, 1977; Schmidt et al., 1977). These studies demonstrated positive modulati ation in cerebellar slices (Garthwaite and Brodbelt, 1989;
Garthwaite, 1982; Schmidt and Nadi, 1977; Schmidt et
al., 1977). These studies demonstrated positive modula-
tion by kainate; however, the buffers used in these st Garthwaite, 1982; Schmidt and Nadi, 1977; Schmidt et al., 1977). These studies demonstrated positive modulation by kainate; however, the buffers used in these studies all contained Mg^{2+} , an antagonist of the NMDA rece al., 1977). These studies demonstrated positive modulation by kainate; however, the buffers used in these studies all contained Mg^{2+} , an antagonist of the NMDA receptor complex (Ascher et al., 1988). As a result, modu tion by kainate; however, the buffers used in these studies
all contained Mg^{2+} , an antagonist of the NMDA receptor
complex (Ascher et al., 1988). As a result, modulation of
GGMP by NMDA was only weakly demonstrated or all contained Mg²⁺, an antagonist of the NMDA receptor
complex (Ascher et al., 1988). As a result, modulation of
cGMP by NMDA was only weakly demonstrated or not
demonstrated, whereas, indeed, there is such modulation
i complex (Ascher et al., 1988). As a result, modulation of cGMP by NMDA was only weakly demonstrated or not demonstrated, whereas, indeed, there is such modulation in vivo (III.B.6). Using a number of chemical lesions of c cGMP by NMDA was only weakly demonstrated or not
demonstrated, whereas, indeed, there is such modulation
in vivo (III.B.6). Using a number of chemical lesions of
cell types in these slices, investigators concluded that the demonstrated, whereas, indeed, there is such modulation
in vivo (III.B.6). Using a number of chemical lesions of
cell types in these slices, investigators concluded that the
major cells initiating cGMP accumulation include in vivo (III.B.6). Using a number of chemical lesions of cell types in these slices, investigators concluded that the major cells initiating cGMP accumulation include the granule cells and astrocytes but not Purkinje cell cell types in these slices, investigators concluded that
major cells initiating cGMP accumulation include
granule cells and astrocytes but not Purkinje
(Garthwaite and Brodbelt, 1989; Garthwaite, 1982); t
findings are in a major cells initiating c
granule cells and astr
(Garthwaite and Brodbe
findings are in agreem
studies (section III.A).
2. Cell fractions. Free granule cells and astrocytes but not Purkinje cells (Garthwaite and Brodbelt, 1989; Garthwaite, 1982); these findings are in agreement with immunohistochemical studies (section III.A).
2. *Cell fractions*. Freshly isolated (Garthwaite and Brodbelt, 1989; Garthwaite, 1982); these
findings are in agreement with immunohistochemical
studies (section III.A).
2. Cell fractions. Freshly isolated bulk cell fractions
obtained from immature rat cerebe

findings are in agreement with immunohistochemical
studies (section III.A).
2. Cell fractions. Freshly isolated bulk cell fractions
obtained from immature rat cerebellum (Gordon and
Balazs, 1983) have shown a rank order fo studies (section III.A).
2. Cell fractions. Freshly isolated bulk cell fractions
obtained from immature rat cerebellum (Gordon and
Balazs, 1983) have shown a rank order for guanylate
cyclase activity as follows (Bunn et al 2. Cell fractions. Freshly isolated bulk cell fractions obtained from immature rat cerebellum (Gordon and Garthwaite cyclase activity as follows (Bunn et al., 1986; Garthwaite and Garthwaite, 1987): glomerulus particles (m Balazs, 1983) have shown a rank order for guanylate
cyclase activity as follows (Bunn et al., 1986; Garthwaite
and Garthwaite, 1987): glomerulus particles (mossy ter-
minals + Golgi terminals + granule dendritic digits) >
 cyclase activity as follows (Bunn et al., 1986; Garthwaite

and Garthwaite, 1987): glomerulus particles (mossy ter-

minals + Golgi terminals + granule dendritic digits) >

astrocytes > Purkinje cells. Guanylate cyclase w and Garthwaite, 1987): glomoninals + Golgi terminals + astrocytes > Purkinje cells. (vated more than 10-fold in a prodrug, sodium nitroprussid 3. Cultured neurons. Culture inals + Golgi terminals + granule dendritic digits) incorptes > Purkinje cells. Guanylate cyclase was actived more than 10-fold in all cell fractions by the Nu odrug, sodium nitroprusside.
3. Cultured neurons. Cultures com

astrocytes > Purkinje cells. Guanylate cyclase was activated more than 10-fold in all cell fractions by the NO prodrug, sodium nitroprusside.
3. Cultured neurons. Cultures composed of $>90\%$ granule cells can be obtained vated more than 10-fold in all cell fractions by the NO
prodrug, sodium nitroprusside.
3. Cultured neurons. Cultures composed of >90% gran-
ule cells can be obtained from a culture of immature rat
cerebellum (Drejer and S prodrug, sodium nitroprusside.

3. Cultured neurons. Cultures composed of >90% que cells can be obtained from a culture of immature

cerebellum (Drejer and Schousboe, 1989). These neu

are EAA utilizing in that they demon 3. Cultured neurons. Cultures composed of $>90\%$ gran-
ule cells can be obtained from a culture of immature rat
cerebellum (Drejer and Schousboe, 1989). These neurons
are EAA utilizing in that they demonstrate Ca^{2+} -de ule cells can be obtained from a culture of immature rat
cerebellum (Drejer and Schousboe, 1989). These neurons
are EAA utilizing in that they demonstrate Ca²⁺-depend-
ent glutamate release (Gallo et al., 1982; Levi et a

op
cells have shown NMDA- and kainate-dependent in-
creases in-CGMP, with concomitant increases in-Ca² D
cells have shown NMDA- and kainate-dependent in-
creases in CGMP, with concomitant increases in Ca²⁺
uptake (Favaron et al., 1988; Novelli et al., 1987; Novelli uptake (Favaron NMDA- and kainate-dependent increases in cGMP, with concomitant increases in Ca²⁺ uptake (Favaron et al., 1988; Novelli et al., 1987; Novelli and Henneberry, 1987; Wrobleweski et al., 1987). The cells have shown NMDA- and kainate-dependent in-
creases in cGMP, with concomitant increases in Ca²⁺
uptake (Favaron et al., 1988; Novelli et al., 1987; Novelli
and Henneberry, 1987; Wrobleweski et al., 1987). The
action cells have shown NMDA- and kainate-dependent in-
creases in cGMP, with concomitant increases in Ca²⁺
uptake (Favaron et al., 1988; Novelli et al., 1987; Novelli
and Henneberry, 1987; Wrobleweski et al., 1987). The
action uptake (Favaron et al., 1988; Novelli et al., 1987; Nove
and Henneberry, 1987; Wrobleweski et al., 1987). T
actions of NMDA also were antagonized by Mg²⁺, cor
petitive NMDA antagonists, and PCP agonists and w
modulated b and Henneberry, 1987; Wrobleweski et al., 1987). The
actions of NMDA also were antagonized by Mg^{2+} , com-
petitive NMDA antagonists, and PCP agonists and were
modulated by allosteric glycine receptor agonists (Wrob-
lew petitive NMDA antagonists, and PCP agonists and were
modulated by allosteric glycine receptor agonists (Wrob-
leweski et al., 1989). In cerebellar granule cell cultures,
sodium nitroprusside stimulates guanylate cyclase an modulated by allosteric glycine receptor agonists (Wrob-
leweski et al., 1989). In cerebellar granule cell cultures,
sodium nitroprusside stimulates guanylate cyclase and
augments cGMP levels (Novelli et al., 1987; Novelli leweski et al., 1989). In cerebellar granule cell cultures,
sodium nitroprusside stimulates guanylate cyclase and
augments cGMP levels (Novelli et al., 1987; Novelli and
Henneberry, 1987). NMDA-dependent c-fos expression
h sodium nitroprusside stimulates guanylate cyclase and
augments cGMP levels (Novelli et al., 1987; Novelli and
Henneberry, 1987). NMDA-dependent c-fos expression
has been shown to occur in the cascade of information
transfe augments cGMP levels (Novelli et al., 1987; Novelli and
Henneberry, 1987). NMDA-dependent c-fos expression
has been shown to occur in the cascade of information
transfer to the nucleus of these cells (Szekely et al.,
1989) Henneberry, 1987). NMDA-dependent c-fos expression
has been shown to occur in the cascade of information
transfer to the nucleus of these cells (Szekely et al.,
1989). In toto, these data are consistent with the presence
o has been shown to occur in the cascade of information
transfer to the nucleus of these cells (Szekely et al.,
1989). In toto, these data are consistent with the presence
of both NMDA and kainate EAA receptors on granule
ce transfer to the nucleus of these cells (Szekely et al., 1989). In toto, these data are consistent with the presence of both NMDA and kainate EAA receptors on granule cells. Cultured granule cells also possess functional GA 1989). In toto, these data are consistent with the preserved footh NMDA and kainate EAA receptors on grancells. Cultured granule cells also possess function GABA-A receptors (Meier et al., 1984; Vaccarino et 1987) and show of both NMDA and kainate EAA receptors on granucells. Cultured granule cells also possess function GABA-A receptors (Meier et al., 1984; Vaccarino et a
1987) and show NMDA-dependent increases in metablism of inositol phosp **III. Intracerebellar Systems**
III. **Intracerebellar Systems**
III. **Intracerebellar Systems**
III. **Intracerebellar Systems**
III. Intracerebellar Systems 1987) and show NMDA-dependent increases in metal
 A. Excitatory Amino Acid and GABAergic Pathways
 A. Excitatory Amino Acid and GABAergic Pathways

The cerebellum is a unique CNS area for biochemic

III. Intracerebellar Systems
A. Excitatory Amino Acid and GABAergic Pathways
The cerebellum is a unique CNS area for biochemical

III. Intracerebellar Systems
A. Excitatory Amino Acid and GABAergic Pathways
The cerebellum is a unique CNS area for biochemi
studies in that a large number of the neuronal part
pants in the afferent, efferent, and endogen A. *Excitatory Amino Acid and GABAergic Pathways*
The cerebellum is a unique CNS area for biochemical
studies in that a large number of the neuronal partici-
pants in the afferent, efferent, and endogenous circuitry
are ch A. *Excludory Amino Acta and GABAergic Pathways*
The cerebellum is a unique CNS area for biochemical
studies in that a large number of the neuronal partici-
pants in the afferent, efferent, and endogenous circuitry
are che studies in that a large number of the neuronal participants in the afferent, efferent, and endogenous circuitry are chemically characterized. Indeed, the only output neuron of the cerebellum, the Purkinje cell (fig. 1), is pants in the afferent, efferent, and endogenous circuitry
are chemically characterized. Indeed, the only output
neuron of the cerebellum, the Purkinje cell (fig. 1), is
known to be GABAergic (Palay and Chan-Palay, 1974).
S are chemically characterized. Indeed, the only output
neuron of the cerebellum, the Purkinje cell (fig. 1), is
known to be GABAergic (Palay and Chan-Palay, 1974).
Similarly, the inhibitory interneurons (fig. 1) of the
mole

of the molecular (M.L.) and granular (G.L.) cell layers. DA, dopamine; ACh , acetylcholine.

cGMP IN THE CEF
granule cell layer (Golgi cells) are all GABAergic (Palay ea
and Chan-Palay, 1974). The granule cell population of gu cGMP IN THE CE
granule cell layer (Golgi cells) are all GABAergic (Palay eand Chan-Palay, 1974). The granule cell population of gr
the granular layer of the cerebellum utilizes an EAA as vi CGMP IN THE CEF
granule cell layer (Golgi cells) are all GABAergic (Palay
and Chan-Palay, 1974). The granule cell population of gu
the granular layer of the cerebellum utilizes an EAA as
its transmitter (Drejer et al., 198 granule cell layer (Golgi cells) are all GABAergic (Palay
and Chan-Palay, 1974). The granule cell population of
the granular layer of the cerebellum utilizes an EAA as
its transmitter (Drejer et al., 1983; Young et al., 19 the granular laver of the cerebellum utilizes an EAA as. its transmitter (Drejer et al., 1983; Young et al., 1974), as do the climbing fibers that derive from neurons in the inferior olive (McBride et al., 1978; Nadi et al., 1977; Roffer-Tarlov and Siman, 1978). In contrast, the its transmitter (Drejer et al., 1983; Young et al., 1974),
as do the climbing fibers that derive from neurons in the
inferior olive (McBride et al., 1978; Nadi et al., 1977;
Roffer-Tarlov and Siman, 1978). In contrast, the as do the climbing fibers that derive from neurons is
inferior olive (McBride et al., 1978; Nadi et al., 1
Roffer-Tarlov and Siman, 1978). In contrast, the ne
chemical makeup of mossy fiber pathways is less
defined and wil

delicate physiological balance between the EAA and GA-
BAergic pathways within the cerebellum (Lehmann and Wood, 1988; Martin and Wood, 1987; Wood et al., 1988a). chemical makeup of mossy fiber pathways is less well 199
defined and will be discussed later (section V.A) stra
Both neurochemical and anatomical data suggest a cGl
delicate physiological balance between the EAA and GA-
fr defined and will be discussed later (section V.A)
Both neurochemical and anatomical data suggest a
delicate physiological balance between the EAA and GA-
BAergic pathways within the cerebellum (Lehmann and
Wood, 1988; Mart Both neurochemical and anatomical data suggest a
delicate physiological balance between the EAA and GA-
free BA ergic pathways within the cerebellum (Lehmann and in
Wood, 1988; Martin and Wood, 1987; Wood et al., 1988a).
I delicate physiological balance between the EAA and GA
BAergic pathways within the cerebellum (Lehmann an
Wood, 1988; Martin and Wood, 1987; Wood et al., 1988a
Indeed, this suggestion is borne out by a large number c
pharma BAergic pathways within the cerebellum (Lehmann a
Wood, 1988; Martin and Wood, 1987; Wood et al., 1988
Indeed, this suggestion is borne out by a large number
pharmacological studies of cerebellar cGMP levels. Ho
ever, the Wood, 1988; Martin and Wood, 1987; Wood et al., 1988a). Condeed, this suggestion is borne out by a large number of condenancological studies of cerebellar cGMP levels. How-
pharmacological studies of cerebellar cGMP level Indeed, this suggestion is borne out by a large number of
pharmacological studies of cerebellar cGMP levels. How-
ever, the site of generation of cGMP within the cerebel-
lum has been a difficult issue to address and has r pharmacological studies of cerebellar cGMP levels. How
ever, the site of generation of cGMP within the cerebel
lum has been a difficult issue to address and has require
a number of experimental approaches. Initially, a dir ever, the site of generation of cGMP within the cerebel-
lum has been a difficult issue to address and has required (see
a number of experimental approaches. Initially, a direct met
correlation between Purkinje cell firing lum has been a difficult issue to address and has required (see a number of experimental approaches. Initially, a direct metrogreation between Purkinje cell firing rates and cere-
bellar cGMP levels (Biggio et al., 1977b,d a number of experimental approaches. Initially, a direct
correlation between Purkinje cell firing rates and cere-
bellar cGMP levels (Biggio et al., 1977b,d; Biggio and
Guidotti, 1976; Wood et al., 1982), along with the hi correlation between Purkinje cell firing rates and cere-
bellar cGMP levels (Biggio et al., 1977b,d; Biggio and v
Guidotti, 1976; Wood et al., 1982), along with the high
revels of guanylate cyclase in Purkinje cells (Aria bellar cGMP levels (Biggio et al., 1977b,d; Biggio and variation of the cyclic cells of guanylate cyclase in Purkinje cells (Ariano et intimal., 1982), led to the suggestion that cGMP is generated cells and that levels of Guidotti, 1976; Wood et al., 1982), along with the high
levels of guanylate cyclase in Purkinje cells (Ariano et ideal, 1982), led to the suggestion that cGMP is generated
in these cells and that levels of this cyclic nuc levels of guanylate cyclase in Purkinje cells (Ariano et intimedial, 1982), led to the suggestion that cGMP is generated cell
in these cells and that levels of this cyclic nucleotide are cG
a biochemical index of Purkinje al., 1982), led to the suggestion that cGMP is generated
in these cells and that levels of this cyclic nucleotide are cGl
a biochemical index of Purkinje cell activity (Biggio et ^{et a}
al., 1977b,d). However, subsequent a biochemical index of Purkinje cell activity (Biggio et al., 1977b,d). However, subsequent experiments with granule cell cultures demonstrated that cGMP can also be generated in these cell types (McCaslin and Morgan, al., 1977b,d). However, subsequent experiments with al., 1977b,d). However, subsequent experiments with 1990; Wood, 1990). Such a mechanism allows a large granule cell cultures demonstrated that cGMP can also be generated in these cell types (McCaslin and Morgan, small inc granule cell cultures demonstrated that cGMP can also
be generated in these cell types (McCaslin and Morgan,
1987; Novelli et al., 1987; Novelli and Henneberry, 1987).
Studies in which cell fractionation was used supported 1987; Novelli et al., 1987; Novelli and Henneberry, 1987).
Studies in which cell fractionation was used supported
the generation of cGMP in granule cells but not Purkinje
cells (Garthwaite and Garthwaite, 1987). Additional 1987; Novelli et al., 1987; Novelli and Henneberry, 1987).

Studies in which cell fractionation was used supported cGM

the generation of cGMP in granule cells but not Purkinje (We

cells (Garthwaite and Garthwaite, 1987) Studies in which cell fractionation was used supported
the generation of cGMP in granule cells but not Purkinje
cells (Garthwaite and Garthwaite, 1987). Additionally,
the generation of cGMP in glial cells was suggested by the generation of cGMP in granule cells but not Purking
cells (Garthwaite and Garthwaite, 1987). Additionally
the generation of cGMP in glial cells was suggested b
these cell fractionation approaches (Garthwaite an
Garthwa cells (Garthwaite and Garthwaite, 1987). Additionally,
the generation of cGMP in glial cells was suggested by
these cell fractionation approaches (Garthwaite and
Garthwaite, 1987). Such data are consistent with a num-
ber the generation of cGMP in glial cells was suggested by

these cell fractionation approaches (Garthwaite and

Garthwaite, 1987). Such data are consistent with a num-

ber of immunohistochemical studies (Chan-Palay and

Pala these cell fractionation approaches (Garthwaite Garthwaite, 1987). Such data are consistent with a n
ber of immunohistochemical studies (Chan-Palay
Palay, 1979; Cumming et al., 1979; de Vente et al., 19
which have demonstr Garthwaite, 1987). Such data are consistent with a number
of immunohistochemical studies (Chan-Palay and class particle and Palay, 1979; Cumming et al., 1979; de Vente et al., 1989)
which have demonstrated basal and sodiu ber of immunohistochemical studies (Chan-Palay and Palay, 1979; Cumming et al., 1979; de Vente et al., 1989)
which have demonstrated basal and sodium nitroprus-
side-dependent increases in cGMP in the Bergmann glia
of the Palay, 1979; Cumming et al., 1979; de Vente et al., 1989)
which have demonstrated basal and sodium nitroprus-
side-dependent increases in cGMP in the Bergmann glia
of the Purkinje cell layer, in the Bergmann glial fibers o which have demonstrated basal and sodium nitroprus-
side-dependent increases in cGMP in the Bergmann glia
of the Purkinje cell layer, in the Bergmann glial fibers of
the molecular layer, and in the astroglia of the granul side-dependent increases in cGMP in the Bergmann glia
of the Purkinje cell layer, in the Bergmann glial fibers of
the molecular layer, and in the astroglia of the granular
cell layer. No cGMP was demonstrated in Purkinje c the molecular layer, and in the astroglia of the granular
cell layer. No cGMP was demonstrated in Purkinje cells
or granule cells when immunohistochemical techniques
were used. Under conditions of nitroprusside stimula-
ti the molecular layer, and in the astroglia of the granular
cell layer. No cGMP was demonstrated in Purkinje cells
or granule cells when immunohistochemical techniques
were used. Under conditions of nitroprusside stimula-
t cell layer. No cGMP was demonstrated in Purkinje cells
or granule cells when immunohistochemical techniques
were used. Under conditions of nitroprusside stimula-
ion, low levels of cGMP could be demonstrated in fibers
in t or granule cells when immunohistochemical techniques
were used. Under conditions of nitroprusside stimula-
tion, low levels of cGMP could be demonstrated in fibers
in the granule cell layer, which might be mossy fiber
inpu were used. Under conditions of nitroprusside stimulation, low levels of cGMP could be demonstrated in fibers in the granule cell layer, which might be mossy fiber inputs (de Vente et al., 1989). These histochemical observ tion, low levels of cGMP could be demonstrated in fibers
in the granule cell layer, which might be mossy fiber
inputs (de Vente et al., 1989). These histochemical ob-
servations suggest that a component of the increased
cG in the granule cell layer, which might be mossy fiber
inputs (de Vente et al., 1989). These histochemical ob-
servations suggest that a component of the increased
cGMP levels observed in cerebellar granule cell cultures
(s inputs (de Vente et al., 1989). These histochemical observations suggest that a component of the increased cGMP levels observed in cerebellar granule cell cultures (section II.F.3), after the addition of EAA receptor agoni servations suggest that a component of the increduct control (section II.F.3), after the addition of EAA rece in this sumptify involve the $2-10\%$ glial cell contract of such cultures (Drejer and Schousbe, 1989). Biochem MP levels observed in cerebellar granule cell culture
sction II.F.3), after the addition of EAA receptor a
sts, might involve the 2–10% glial cell contaminat
such cultures (Drejer and Schousbe, 1989).
Biochemical studies o (section II.F.3), after the addition of EAA receptor ago-
nists, might involve the $2-10\%$ glial cell contamination
of such cultures (Drejer and Schousbe, 1989).
Biochemical studies of cerebellar soluble and particu-
lat

nists, might involve the 2–10% glial cell contamination
of such cultures (Drejer and Schousbe, 1989).
Biochemical studies of cerebellar soluble and particu-
late cell fractions have clearly demonstrated stimulation
of guan of such cultures (Drejer and Schousbe, 1989). a
Biochemical studies of cerebellar soluble and particu-
late cell fractions have clearly demonstrated stimulation
of guanylate cyclase by sodium nitroprusside, a drug that G
s

granule cell layer (Golgi cells) are all GABAergic (Palay early data suggested that NO can activate cerebellar
and Chan-Palay, 1974). The granule cell population of guanylate cyclase to generate increased GMP levels in
the Roffer-Tarlov and Siman, 1978). In contrast, the neuro-

chemical makeup of mossy fiber pathways is less well

1990b; Wood and Rao, 1990; Wood, 1990) have demon-

defined and will be discussed later (section V.A)

Both neu EREBELLUM
early data suggested that NO can activate cerebellar
guanylate cyclase to generate increased cGMP levels in EREBELLUM
early data suggested that NO can activate cerebellar
guanylate cyclase to generate increased cGMP levels in
vitro. In efforts to define the locus of cGMP generation 5
early data suggested that NO can activate cerebellar
guanylate cyclase to generate increased cGMP levels in
vitro. In efforts to define the locus of cGMP generation
and the possible role of NO in cGMP formation, pharearly data suggested that NO can activate cerebells
guanylate cyclase to generate increased cGMP levels i
vitro. In efforts to define the locus of cGMP generatio
and the possible role of NO in cGMP formation, phar-
macolog early data suggested that NO can activate cerebellar
guanylate cyclase to generate increased cGMP levels in
vitro. In efforts to define the locus of cGMP generation
and the possible role of NO in cGMP formation, phar-
maco guanylate cyclase to generate increased cGMP levels in
vitro. In efforts to define the locus of cGMP generation
and the possible role of NO in cGMP formation, phar-
macological experiments both in vitro with cerebellar
sli vitro. In efforts to define the locus of cGMP generation
and the possible role of NO in cGMP formation, phar-
macological experiments both in vitro with cerebellar
slices (Bredt and Snyder, 1989; Garthwaite et al., 1988;
G and the possible role of NO in cGMP formation, ph
macological experiments both in vitro with cerebel
slices (Bredt and Snyder, 1989; Garthwaite et al., 19
Garthwaite et al., 1989a,b) and in vivo (Wood et a
1990b; Wood and macological experiments both in vitro with cerebellar
slices (Bredt and Snyder, 1989; Garthwaite et al., 1988;
Garthwaite et al., 1989a,b) and in vivo (Wood et al.,
1990b; Wood and Rao, 1990; Wood, 1990) have demon-
strate slices (Bredt and Snyder, 1989; Garthwaite et al., 1988;
Garthwaite et al., 1989a,b) and in vivo (Wood et al.,
1990b; Wood and Rao, 1990; Wood, 1990) have demon-
strated that EAA-dependent increases in cerebellar
cGMP are Garthwaite et al., 1989a,b) and in vivo (Wood et al., 1990b; Wood and Rao, 1990; Wood, 1990) have demonstrated that EAA-dependent increases in cerebellar cGMP are dependent upon the prior formation of NO from arginine via cGMP are dependent upon the prior formation of NO
from arginine via NO synthase. Thus, the NO synthase
inhibitor, N-monomethyl-L-arginine, after direct intra-
cerebellar administration, will antagonize increases in
cerebel strated that EAA-dependent increases in cerebellar
cGMP are dependent upon the prior formation of NO
from arginine via NO synthase. Thus, the NO synthase
inhibitor, N-monomethyl-L-arginine, after direct intra-
cerebellar a cGMP are dependent upon the prior formation of NO
from arginine via NO synthase. Thus, the NO synthase
inhibitor, N-monomethyl-L-arginine, after direct intra-
cerebellar administration, will antagonize increases in
cerebel from arginine via NO synthase. Thus, the NO synthase
inhibitor, N-monomethyl-L-arginine, after direct intra-
cerebellar administration, will antagonize increases in
cerebellar cGMP elicited by the EAA agonists (section
III inhibitor, N-monomethyl-L-arginine, after direct intra-
cerebellar administration, will antagonize increases in
cerebellar CGMP elicited by the EAA agonists (section
III.B.6) NMDA, kainate, and quisqualate as well as by
ph cerebellar administration, will antagonize increases increbellar cGMP elicited by the EAA agonists (section III.B.6) NMDA, kainate, and quisqualate as well as the pharmacologically induced EAA release after harmaline (sect cerebellar cGMP elicited by the EAA agonists (section III.B.6) NMDA, kainate, and quisqualate as well as by pharmacologically induced EAA release after harmaline (section IV) or pentylenetetrazol (section III.B.6) treatmen III.B.6) NMDA, kainate, and quisqualate as well as by
pharmacologically induced EAA release after harmaline
(section IV) or pentylenetetrazol (section III.B.6) treat-
ment (Wood et al., 1990b; Wood and Rao, 1990; Wood
1990 pharmacologically induced EAA release after harmaline (section IV) or pentylenetetrazol (section III.B.6) treatment (Wood et al., 1990b; Wood and Rao, 1990; Wood, 1990). These data have led to the hypothesis that activatio ment (Wood et al., 1990b; Wood and Rao, 1990; Wood, 1990). These data have led to the hypothesis that activation of EAA receptors on granule and Purkinje cells results in the formation of NO, which is a diffusible intercel 1990). These data have led to the hypothesis that acti-1990). These data have led to the hypothesis that activation of EAA receptors on granule and Purkinje cells results in the formation of NO, which is a diffusible intercellular communicator entering glial and neuronal cells vation of EAA receptors on granule and Purkinje cells
results in the formation of NO, which is a diffusible
intercellular communicator entering glial and neuronal
cells where it activates guanylate cyclase and augments
cGM results in the formation of NO, which is a diffusible
intercellular communicator entering glial and neuronal
cells where it activates guanylate cyclase and augments
cGMP formation (Bredt and Synder, 1989; Garthwaite
et al. intercellular communicator entering glial and neuronal
cells where it activates guanylate cyclase and augments
cGMP formation (Bredt and Synder, 1989; Garthwaite
et al., 1988, 1989a,b; Wood et al., 1990b; Wood and Rao,
199 cells where it activates guanylate cyclase and augments
cGMP formation (Bredt and Synder, 1989; Garthwaite
et al., 1988, 1989a,b; Wood et al., 1990b; Wood and Rao,
1990; Wood, 1990). Such a mechanism allows a large
amplifi cGMP formation (Bredt and Synder, 1989; Garthwaite et al., 1988, 1989a,b; Wood et al., 1990b; Wood and Rao, 1990; Wood, 1990). Such a mechanism allows a large amplification, via diffusion of NO to many cells, for a small i et al., 1988, 1989a,b; Wood et al., 1990b; Wood and Rao, 1990; Wood, 1990). Such a mechanism allows a large amplification, via diffusion of NO to many cells, for a small increase in EAA input to the neurons generating NO a 1990; Wood, 1990). Such a mechanism allows a large amplification, via diffusion of NO to many cells, for a small increase in EAA input to the neurons generating NO and explains the steep dose-response curves for cGMP gener small increase in EAA input to the neurons generating
NO and explains the steep dose-response curves for
cGMP generation noted with EAA receptor agonists
(Wood et al., 1989a)
The anatomical proximity of glial cells and the nall increase in EAA input to the neurons generatin

O and explains the steep dose-response curves fo

NMP generation noted with EAA receptor agonist

Vood et al., 1989a)

The anatomical proximity of glial cells and their

NO and explains the steep dose-response curves for
cGMP generation noted with EAA receptor agonists
(Wood et al., 1989a)
The anatomical proximity of glial cells and their com-
plex associations with neurons (Hatten et al., cGMP generation noted with EAA receptor agonists

(Wood et al., 1989a)

The anatomical proximity of glial cells and their com-

plex associations with neurons (Hatten et al., 1984; Palay

and Chan-Palay, 1974; Reese et al. (Wood et al., 1989a)
The anatomical proximity of glial cells and their com-
plex associations with neurons (Hatten et al., 1984; Palay
and Chan-Palay, 1974; Reese et al., 1985) also allows
rapid entry of NO for activation The anatomical proximity of glial cells and their com-
plex associations with neurons (Hatten et al., 1984; Palay
and Chan-Palay, 1974; Reese et al., 1985) also allows
rapid entry of NO for activation of glial guanylate c plex associations with neurons (riatten et al., 1984; Palay
and Chan-Palay, 1974; Reese et al., 1985) also allows
rapid entry of NO for activation of glial guanylate cy-
clase. Indeed, the immunohistochemistry of cGMP in
g rapid entry of NO for activation of gilal guanyiate cy-
clase. Indeed, the immunohistochemistry of cGMP in
glia demonstrated glial processes around Purkinje cells,
around synapses between Purkinje cell thorns and axonal
bo clase. Indeed, the Immunonistochemistry of CGMP In
glia demonstrated glial processes around Purkinje cells,
around synapses between Purkinje cell thorns and axonal
boutons, around mossy fiber rosettes, and around granule
c gna demonstrated gnal processes around rurking cens,
around synapses between Purkinje cell thorns and axonal
boutons, around mossy fiber rosettes, and around granule
cells (Chan-Palay and Palay, 1979). Biochemical studies
 around synapses between Furking centrofns and axonal
boutons, around mossy fiber rosettes, and around granule
cells (Chan-Palay and Palay, 1979). Biochemical studies
also have demonstrated an enrichment of guanylate cy-
cl potently stimulated an enrichment of guanylate cy-
clase in freshly isolated cerebellar glial cell fractions
(Bunn et al., 1986). This glial enzyme was found to be
potently stimulated by sodium nitroprusside. However,
the (Bunn et al., 1986). This glial enzyme was found to be potently stimulated by sodium nitroprusside. However, the functional role of GMP as a second messenger in glial cells remains to be defined.
B. Pharmacology potently stimulated by sodium nitroprusside. However,

1. y-Aminobutyric acid-A/benzodiazepine receptor modulators. The GABA-A/benzodiazepine
modulators. The GABA-A/benzodiazepine
channel macroreceptor complex consists of a nu B. Pharmacology

1. γ -Aminobutyric acid-A/benzodiazepine receptor

modulators. The GABA-A/benzodiazepine/chloride

channel macroreceptor complex consists of a number of

protein subunits for which the regional stoichio 1. γ -Aminobutyric acid-A/benzodiazepine receptor
modulators. The GABA-A/benzodiazepine/chloride
channel macroreceptor complex consists of a number of
protein subunits for which the regional stoichiometries
are under in modulators. The GABA-A/benzodiazepine/chlorochannel macroreceptor complex consists of a number protein subunits for which the regional stoichiometicare under intense investigation (Meinecke et al., 194
However, both recept channel macroreceptor complex consists of a number of
protein subunits for which the regional stoichiometries
are under intense investigation (Meinecke et al., 1989).
However, both receptor autoradiographic and immuno-
his protein subunits for which the regional stoichiometries
are under intense investigation (Meinecke et al., 1989)
However, both receptor autoradiographic and immuno
histochemical studies have demonstrated cerebella
GABA-A/be are under intense investigation (Meinecke et al., 1989).
However, both receptor autoradiographic and immuno-
histochemical studies have demonstrated cerebellar
GABA-A/benzodiazepine receptor complexes in loca-
tions compat

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

aspet

wo
and basket cell bodies, and granule cells (Meinecke et
al., 1989; Palacios et al., 1980; Richards et al., 1987).
Receptor-binding and biochemical studies have also dem-⁶

and basket cell bodies, and granule cells (Meinecke e

al., 1989; Palacios et al., 1980; Richards et al., 1987)

Receptor-binding and biochemical studies have also dem

onstrated the GABA-A/benzodiazepine receptor com and basket cell bodies, and granule cells (Meinecke et dial., 1989; Palacios et al., 1980; Richards et al., 1987). co.
Receptor-binding and biochemical studies have also dem-
onstrated the GABA-A/benzodiazepine receptor co al., 1989; Palacios et al., 1980; Richards et al., 1987).
Receptor-binding and biochemical studies have also demonstrated the GABA-A/benzodiazepine receptor complex on cultured (section II.F.3) and freshly isolated
(Olsen Receptor-binding and biochemical studies have also dem-
onstrated the GABA-A/benzodiazepine receptor com-
plex on cultured (section II.F.3) and freshly isolated b
(Olsen and Mikoshiba, 1978) granule cells. Consistent a
wit onstrated the GABA-A/benzodiazepine receptor complex on cultured (section II.F.3) and freshly isolated (Olsen and Mikoshiba, 1978) granule cells. Consistent with these studies, Weaver mice which have a granule cell deficit plex on cultured (section II.F.3) and freshly isolated (Olsen and Mikoshiba, 1978) granule cells. Consistent with these studies, Weaver mice which have a granule cell deficit (table 1) have a 73% loss of GABA-A receptor bi Isen and Mikoshiba, 1978) granule cells. Consistent
th these studies, Weaver mice which have a granule
il deficit (table 1) have a 73% loss of GABA-A receptor
nding in the cerebellum (Olsen and Mikoshiba, 1978).
In additio

with these studies, Weaver mice which have a granucell deficit (table 1) have a 73% loss of GABA-A recept
binding in the cerebellum (Olsen and Mikoshiba, 1978
In addition to the GABA-A/benzodiazepine sites
which drugs can cell deficit (table 1) have a 73% loss of GABA-A recepto
binding in the cerebellum (Olsen and Mikoshiba, 1978)
In addition to the GABA-A/benzodiazepine sites a
which drugs can modulate GABAergic transmission
there are anci binding in the cerebellum (Olsen and Mikoshiba, 1978).
In addition to the GABA-A/benzodiazepine sites at
which drugs can modulate GABAergic transmission,
there are ancillary barbiturate-binding sites on this mac-
romolecul which drugs can modulate GABAergic transmission,
there are ancillary barbiturate-binding sites on this mac-
romolecular complex that also can lead to allosteric
modulation of GABA-A receptor function. In light of the
large there are ancillary barbiturate-binding sites on this mac-
romolecular complex that also can lead to allosteric La
modulation of GABA-A receptor function. In light of the
large number of inhibitory GABA
ergic interneurons romolecular complex that also can lead to allosteric
modulation of GABA-A receptor function. In light of the
large number of inhibitory GABAergic interneurons
within the cerebellum and the availability of a large
number of modulation of GABA-A receptor function. In light of the large number of inhibitory GABAergic interneurons within the cerebellum and the availability of a large number of pharmacological agents to manipulate GA-BAergic tran large number of inhibitory GABAergic interneurons
within the cerebellum and the availability of a large
number of pharmacological agents to manipulate GA-
BAergic transmission, it is not surprising that the most
comprehens within the cerebellum and the availability of a large
number of pharmacological agents to manipulate GA-
BAergic transmission, it is not surprising that the most
comprehensive reports of the pharmacology of cerebellar
cGMP number of pharmacological agents to manipulate GA-
BAergic transmission, it is not surprising that the most
comprehensive reports of the pharmacology of cerebellar
cGMP have been concerned with the GABA-A receptor
complex Aergic transmission, it is not surprising that the most
mprehensive reports of the pharmacology of cerebellar
iMP have been concerned with the GABA-A receptor
mplex (table 3).
It is clear from such studies that the GABA-A

comprehensive reports of the pharmacology of cerebellar
cGMP have been concerned with the GABA-A receptor
complex (table 3).
It is clear from such studies that the GABA-A agonist,
muscimol (Biggio et al., 1977a,d; Mohler e cGMP have been concerned with the GABA-A receptor botomplex (table 3). and the GABA-A agonist, and it is clear from such studies that the GABA-A agonist, comuscimol (Biggio et al., 1977a,d; Mohler et al., 1981), intraventr complex (table 3). antage and the GABA-A agonist, complex (table 3). and the GABA-A agonist, compuscime (Biggio et al., 1977a,d; Mohler et al., 1981), 2. γ intraventricular GABA itself (Mao et al., 1974b), a large cere It is clear from such studies that the GABA-A agor
muscimol (Biggio et al., 1977a,d; Mohler et al., 193
intraventricular GABA itself (Mao et al., 1974b), a la
number of benzodiazepine agonists (table 3), the GA
transaminas muscimol (Biggio et al., 1977a,d; Mohler et al., 1981),
intraventricular GABA itself (Mao et al., 1974b), a large
number of benzodiazepine agonists (table 3), the GABA nu
transaminase inhibitor, aminooxyacetic acid (Dinnen intraventricular GABA itself (Mao et al., 1974b), a large
number of benzodiazepine agonists (table 3), the GABA
transaminase inhibitor, aminooxyacetic acid (Dinnen-
dahl and Gumulka, 1977), and barbiturates (section
III.B. number of benzodiazepine agonists (table 3), the GABA numeral and Gumulka, 1977), and barbiturates (section of III.B.5) all dramatically decrease cerebellar cGMP levels. 1 The actions of diazepam have also been shown to in transaminase inhibitor, aminooxyacetic acid (Dinnen-
dahl and Gumulka, 1977), and barbiturates (section
III.B.5) all dramatically decrease cerebellar cGMP levels.
The actions of diazepam have also been shown to involve
dec dahl and Gumulka, 1977), and barbiturates (section on III.B.5) all dramatically decrease cerebellar cGMP levels. 19
The actions of diazepam have also been shown to involve tic
decreases in cGMP in both the vermis and the c III.B.5) all dramatically decrease cerebellar cGMP levels. 1983
The actions of diazepam have also been shown to involve tion
decreases in cGMP in both the vermis and the cerebellar 1983
hemispheres (Rubin and Ferrendelli, The actions of diazepam have also been shown to involve
decreases in cGMP in both the vermis and the cerebellar
hemispheres (Rubin and Ferrendelli, 1977). In the case
of the vermis, the proportion of the total decrease in
 decreases in cGMP in both the vermis and the cerebella
hemispheres (Rubin and Ferrendelli, 1977). In the case
of the vermis, the proportion of the total decrease in
cGMP observed appears to be 70% in the molecular laye
and 1977). of the vermis, the proportion of the total decrease in $cGMP$ observed appears to be 70% in the molecular layer and 30% in the granular layer (Rubin and Ferrendelli, 1977).
Local intracerebellar administration of either mu

cGMP observed appears to be 70% in the molecular layer direct and 30% in the granular layer (Rubin and Ferrendelli, cel
1977). climate intracerebellar administration of either muscials
mol or diazepam induced the same degr and 30% in the granular layer (Rubin and Ferrende
1977).
Local intracerebellar administration of either mus
mol or diazepam induced the same degree of cGM
decrease as observed by parenteral drug administratio
actions consi 1977).

Local intracerebellar administration of either musci-

mol or diazepam induced the same degree of cGMP

decrease as observed by parenteral drug administration,

actions consistent with activation of the cerebellar
 Local intracereberial administration of either muscrimol or diazepam induced the same degree of cGMP
decrease as observed by parenteral drug administration,
actions consistent with activation of the cerebellar
GABA-A/benzo not or diazepain induced the same degree of COVIT
decrease as observed by parenteral drug administration,
actions consistent with activation of the cerebellar
GABA-A/benzodiazepine receptor complex (Biggio et al.,
1977d). decrease as observed by parenteral drug administration,
actions consistent with activation of the cerebellar
GABA-A/benzodiazepine receptor complex (Biggio et al.,
1977d). Additionally, the actions of parenteral muscimol
a GABA-A/benzodiazepine receptor complex (Biggio et al., 1977d). Additionally, the actions of parenteral muscimol

and diazepam were not altered by 3-acetylpyridine le-

sions (section IV), indicating a lack of involvement o 1977d). Additionally, the actions of parenteral muand diazepam were not altered by 3-acetylpyridisions (section IV), indicating a lack of involvem
the climbing fiber system in the actions of these
(Biggio et al., 1977d; Bi d diazepam were not altered by 3-acetylpyridine le-
ons (section IV), indicating a lack of involvement of
e climbing fiber system in the actions of these drugs
iggio et al., 1977d; Biggio and Guidotti, 1976).
The actions o

sions (section IV), indicating a lack of involvement of
the climbing fiber system in the actions of these drugs
(Biggio et al., 1977d; Biggio and Guidotti, 1976).
The actions of diazepam in decreasing basal cerebellar
cGMP the climbing fiber system in the actions of these drugs (Biggio et al., 1977d; Biggio and Guidotti, 1976).
The actions of diazepam in decreasing basal cerebellar
cGMP were potently blocked by the benzodiazepine re-
ceptor (Biggio et al., 1977d; Biggio and Guidotti, 1976). leverthe actions of diazepam in decreasing basal cerebellar than cGMP were potently blocked by the benzodiazepine receptor antagonist, flumazenil (Mohler et al., 1981), th The actions of diazepam in decreasing basal cerebellar tage.
 $cGMP$ were potently blocked by the benzodiazepine re-

ceptor antagonist, flumazenil (Mohler et al., 1981), the

whereas the actions of muscimol and barbiturat cGMP were potently blocked by the benzodiazepine receptor antagonist, flumazenil (Mohler et al., 1981), whereas the actions of muscimol and barbiturates were unaltered by this antagonist. These data support the involvement ceptor antagonist, flumazenil (Mohler et al., 1981), thereas the actions of muscimol and barbiturates were (unaltered by this antagonist. These data support the involvement of benzodiazepine receptors in the actions word b whereas the actions of muscimol and barbiturates were
unaltered by this antagonist. These data support the
involvement of benzodiazepine receptors in the actions
of benzodiazepines, a suggestion previously proposed
based o unaltered by this antagonist. These data support the 3. Adenosine modulators. Autoradiographic studies
involvement of benzodiazepine receptors in the actions were the first to clearly localize A_1 receptors to cerebella involvement of benzodiazepine receptors in the actions were
of benzodiazepines, a suggestion previously proposed grant
based on correlations between benzodiazepine receptor numb
affinity and potency to decrease cerebellar of benzodiazepines, a suggestion previously probased on correlations between benzodiazepine reaffinity and potency to decrease cerebellar cGMP (Costa et al., 1975). Additionally, the active diametabolites, desmethyldiazepa

woop
and basket cell bodies, and granule cells (Meinecke et diazepam, were also active in decreasing cerebellar
al., 1989; Palacios et al., 1980; Richards et al., 1987). cGMP levels (Govoni et al., 1976). The atypical anxi D
diazepam, were also active in decreasing cerebellar
cGMP levels (Govoni et al., 1976). The atypical anxiol-D
diazepam, were also active in decreasing cerebel
cGMP levels (Govoni et al., 1976). The atypical anxi
ytic agents, zopiclone, CL 218,872, and CGS 9895, whi D
diazepam, were also active in decreasing cerebellar
cGMP levels (Govoni et al., 1976). The atypical anxiol-
ytic agents, zopiclone, CL 218,872, and CGS 9895, which
also decrease cerebellar cGMP levels, were antagonized diazepam, were also active in decreasing cerebellar
cGMP levels (Govoni et al., 1976). The atypical anxiol-
ytic agents, zopiclone, CL 218,872, and CGS 9895, which
also decrease cerebellar cGMP levels, were antagonized
by diazepam, were also active in decreasing cerebellar cGMP levels (Govoni et al., 1976). The atypical anxiolytic agents, zopiclone, CL 218,872, and CGS 9895, which also decrease cerebellar cGMP levels, were antagonized by fl cGMP levels (Govoni et al., 1976). The atypical anxiolytic agents, zopiclone, CL 218,872, and CGS 9895, which also decrease cerebellar cGMP levels, were antagonized by flumazenil, indicating that benzodiazepine receptors a ytic agents, zopiclone, CL
also decrease cerebellar of
by flumazenil, indicating
also mediate their action
al., 1984b, 1986).
Benzodiazepine invers so decrease cerebellar cGMP levels, were antagonized

flumazenil, indicating that benzodiazepine receptors

so mediate their actions (Mohler et al., 1981; Wood et

, 1984b, 1986).

Benzodiazepine inverse agonists have the

In addition to the GABA-A/benzodiazepine sites at cGMP (Wood et al., 1984c). These include methyl- β -
which drugs can modulate GABAergic transmission, carboline-3-carboxylate (Burkard et al., 1985), ethyl- β -
there ar by flumazenil, indicating that benzodiazepine receptors
also mediate their actions (Mohler et al., 1981; Wood et
al., 1984b, 1986).
Benzodiazepine inverse agonists have the opposite
pharmacological profile in that they inc also mediate their actions (Mohler et al., 1981; Wood., 1984b, 1986).

Benzodiazepine inverse agonists have the oppo

pharmacological profile in that they increase cerebe

cGMP (Wood et al., 1984c). These include methy

ca al., 1984b, 1986).
Benzodiazepine inverse agonists have the oppos
pharmacological profile in that they increase cerebel
cGMP (Wood et al., 1984c). These include methyl
carboline-3-carboxylate (Burkard et al., 1985), ethyl
 Benzodiazepine inverse agonists have the opposite
pharmacological profile in that they increase cerebellar
cGMP (Wood et al., 1984c). These include methyl- β -
carboline-3-carboxylate (Burkard et al., 1985), ethyl- β -
 pharmacological profile in that they incread CGMP (Wood et al., 1984c). These includes carboline-3-carboxylate (Burkard et al., 1983), and methyl-6,7-dimethoxy-4-boline-3-carboxylate (Govoni et al. 1976). cGMP (Wood et al., 1984c). These include methyl- β -carboline-3-carboxylate (Burkard et al., 1985), ethyl- β -carboline-3-carboxylate (Fujimoto et al., 1982; Koe and Lebel, 1983), and methyl-6,7-dimethoxy-4-ethyl- β -c carboline-3-carboxylate (Burkard et al., 1985), ethy
carboline-3-carboxylate (Fujimoto et al., 1982; Koe
Lebel, 1983), and methyl-6,7-dimethoxy-4-ethyl- β -
boline-3-carboxylate (Govoni et al. 1976). The incre
in cerebell carboline-3-carboxylate (Fujimoto et al., 1982; Koe and Lebel, 1983), and methyl-6,7-dimethoxy-4-ethyl- β -carboline-3-carboxylate (Govoni et al. 1976). The increases in cerebellar cGMP induced by these inverse benzodiaz Lebel, 1983), and methyl-6,7-dimethoxy-4-ethyl- β -carboline-3-carboxylate (Govoni et al. 1976). The increases in cerebellar cGMP induced by these inverse benzodiazepine agonists are reversed in a dose-dependent fashion boline-3-carboxylate (Govoni et al. 1976). The increases
in cerebellar cGMP induced by these inverse benzodiaze-
pine agonists are reversed in a dose-dependent fashion
by flumazenil, indicating that their actions are medi in cerebellar cGMP induced by these inverse ber
pine agonists are reversed in a dose-dependent
by flumazenil, indicating that their actions are :
by benzodiazepine receptors. At doses which do
basal cerebellar cGMP levels pine agonists are reversed in a dose-dependent fashion
by flumazenil, indicating that their actions are mediated
by benzodiazepine receptors. At doses which do not alter
basal cerebellar cGMP levels, ethyl- β -carboline-3 by flumazenil, indicating that their actions are mediated
by benzodiazepine receptors. At doses which do not alter
basal cerebellar CGMP levels, ethyl- β -carboline-3-car-
boxylate (Fujimoto et al., 1982; Koe and Lebel, 1 by benzodiazep
basal cerebella
boxylate (Fujii
antagonizes the
CGMP levels.
2. γ -Aminobi *2. 2. 2. y-Aminobushine accompacies the depressant actions of diazepam on 2. y-Aminobutyric acid-B receptor agonists.* Within the rebellum, GABA-B receptors have been observed at a

in cerebellar CGMP induced by these inverse benzodiaze-
pine agonists are reversed in a dose-dependent fashion
by flumazenil, indicating that their actions are mediated
by benzodiazepine receptors. At doses which do not a antagonizes the depressant actions of diazepam on $cGMP$ levels.
 $2. \gamma$ -Aminobutyric acid-B receptor agonists. Within the cerebellum, GABA-B receptors have been observed at a number of anatomical loci that can effectively cGMP levels.

2. γ -Aminobutyric acid-B receptor agonists. Within the cerebellum, GABA-B receptors have been observed at number of anatomical loci that can effectively modulat cGMP levels. Lesions with 3-acetylpyridine 2. γ -*Aminobutyric acid-B receptor agonists*. Within the cerebellum, GABA-B receptors have been observed at a number of anatomical loci that can effectively modulate cGMP levels. Lesions with 3-acetylpyridine have demo exerciencial, GABA-B receptors have been observed at a
number of anatomical loci that can effectively modulate
cGMP levels. Lesions with 3-acetylpyridine have demonstrated
onstrated receptors on climbing fibers (Kato and F cGMP levels. Lesions with 3-acetylpyridine have deronstrated receptors on climbing fibers (Kato and Fukud 1985), studies of mutant mice have demonstrated functionally coupled receptors on granule cells (Wojcik et a 1985), tors on entity and granule cells (Waiver and Fusure, 1985), studies of mutant mice have demonstrated functionally coupled receptors on granule cells (Wojcik et al., 1981). Therefore, these inhibitory receptors can directly tionally coupled receptors on granule cells (Wojcik et al., 1985), and autoradiographic studies have revealed receptors on Purkinje cell dendrites and granule cells (Wilkin et al., 1981). Therefore, these inhibitory recept 1980), and autorating rapinc studies have revealed receptors on Purkinje cell dendrites and granule cells (Wilkin et al., 1981). Therefore, these inhibitory receptors can directly decrease activity of both Purkinje and gra tors on Purkinje cell dendrites and granule cells (Wilkin et al., 1981). Therefore, these inhibitory receptors can directly decrease activity of both Purkinje and granule cells within the cerebellum as well as decrease pos et al., 1981). Therefore, these immoltory receptors can
directly decrease activity of both Purkinje and granule
cells within the cerebellum as well as decrease positive
climbing fiber input. Recent autoradiographic studies directly decrease activity of both Purkinje and granule
cells within the cerebellum as well as decrease positive
climbing fiber input. Recent autoradiographic studies
also have demonstrated a clear topographic GABA-B
recep cells within the cerebellum as well as decrease positivelimbing fiber input. Recent autoradiographic studies also have demonstrated a clear topographic GABA-leceptor distribution with parasaggital zones of high an low bind climbing fiber input. Recent autoradiographic studies
also have demonstrated a clear topographic GABA-B
receptor distribution with parasaggital zones of high and
low binding; this distribution correlates with the para-
sag also have demonstrated a
receptor distribution with plow binding; this distribution
saggital zonation of both aff
(Albin and Gilman, 1989).
As would be predicted by ceptor distribution with parasaggital zones of high and we binding; this distribution correlates with the paraggital zonation of both afferent and efferent pathwa lbin and Gilman, 1989).
As would be predicted by the GABA-B

bution, backofferent and efferent pathways
 (Albin and Gilman, 1989).
 As would be predicted by the GABA-B receptor distri-

bution, baclofen, an agonist at these receptors, dose

dependently (Gumulka et al., 1979a) (Albin and Gilman, 1989).
As would be predicted by the GABA-B receptor distribution, baclofen, an agonist at these receptors, dose
dependently (Gumulka et al., 1979a) and time depend-
ently (Mailman et al., 1978) decrease As would be predicted by the GABA-B receptor distribution, baclofen, an agonist at these receptors, dose dependently (Gumulka et al., 1979a) and time dependently (Mailman et al., 1978) decreased cerebellar cGMP levels. Pre bution, baclofen, an agonist at these receptors, dose
dependently (Gumulka et al., 1979a) and time depend-
ently (Mailman et al., 1978) decreased cerebellar cGMP
levels. Pretreatment with baclofen also was able to an-
tago dependently (Gumulka et al., 1979a) and time dependently (Mailman et al., 1978) decreased cerebellar cGMP
levels. Pretreatment with baclofen also was able to antagonize the increases in cerebellar cGMP evoked by the
GABAer ently (Mailman et al., 1978) decreased cerebellar cGMP
levels. Pretreatment with baclofen also was able to an-
tagonize the increases in cerebellar cGMP evoked by the
GABAergic antagonists, isoniazid and picrotoxin, but no levels. Pretreatment with
tagonize the increases in GABAergic antagonists, is
those evoked by either
(Gumulka et al., 1979a).
3. Adenosine modulat gonize the increases in cerebellar cGMP evoked by the
ABAergic antagonists, isoniazid and picrotoxin, but not
ose evoked by either pentylenetetrazol or arecoline
lumulka et al., 1979a).
3. Adenosine modulators. Autoradiogr

The first to clearly localize A₁ receptors to cerebellar
 α *Adenosine modulators.* Autoradiographic studies

were the first to clearly localize A₁ receptors to cerebellar

granule cells and to demonstrate a decrea Granulka et al., 1979a).

3. *Adenosine modulators*. Autoradiographic studies

were the first to clearly localize A₁ receptors to cerebellar

granule cells and to demonstrate a decrease in their

numbers in Weaver but no 3. Adenosine modulators. Autoradiographic studies
were the first to clearly localize A_1 receptors to cerebellar
granule cells and to demonstrate a decrease in their
numbers in Weaver but not Nervous mice (table 1;
Good granule cells and to demonstrate a decrease in their Goodman and Snyder, 1982; Goodman et al., 1983).

CGMP IN THE CEREBELLUM 7

THE CEREBELLU
TABLE 3
P in the cerebellum **CGMP IN THE CEREBELLUM**
TABLE 3
*Drug effects on cerebellar cGMP in the cerebellum of the rat and mouse**

TABLE 3-Continued

PHARM
REV

cGMP IN THE CEREBELLUM 9 CGMP IN THE CEREBELLUM
TABLE 3-Continued

10 WOOD

WOOD
TABLE 3-Continued

NECA

10 mg

25 mg ip 120 min 70 M Wood et al., 1999b

25 mg ip 135 min 100 M Wood et al., 1989b

25 mg ip 135 min 100 M Wood et al., 1989b

26 mg ip 135 min 100 M Wood et al., 1989b

26 mg ip 135 min 100 M Wood et al., 19 * Abbreviations: AP5, aminophosphonopentanoate; AP7, aminophosphonohetanoate; CCE, ethyl β -carboline-3-carboxylate; CCM, methyl β -carboline-3-carboxylate; DMCM, methyl 6,7-dimethyoxy-4-ethyl- β -carboline-3-carboxy carboline-3-carboxylate; DMCM, methyl 6,7-dimethyoxy-4-ethyl- β -carboline-3-carboxylate; DN 141
proline amide; DPH, diphenylhydantoin; icb, intracerebellar; ict, intracisternal; ivt, intraventricular;
thiazolidine-4-carb

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

PHARMACOLOGICAL REVIEWS

aspet

w
cultures supported these autoradiographic studies. Fur-
thermore, in vivo pharmacological studies with the aden-12
cultures supported these autoradiographic studies. Fu
thermore, in vivo pharmacological studies with the ader
osine agonists, cyclohexyladenosine, N-ethylcarboxam 12
cultures supported these autoradiographic studie
thermore, in vivo pharmacological studies with th
osine agonists, cyclohexyladenosine, N-ethylcarb
doadenosine, and R-phenylisopropyladenosine, a cultures supported these autoradiographic studies. Fur-
thermore, in vivo pharmacological studies with the aden-
osine agonists, cyclohexyladenosine, N-ethylcarboxami-
doadenosine, and R-phenylisopropyladenosine, and the
s cultures supported these autoradiographic st
thermore, in vivo pharmacological studies wit
osine agonists, cyclohexyladenosine, N-ethyl
doadenosine, and R-phenylisopropyladenosin
selective A₁ antagonist, 8-cyclopentyl-1, thermore, in vivo pharmacological studies with the adenosine agonists, cyclohexyladenosine, N-ethylcarboxami-
doadenosine, and R-phenylisopropyladenosine, and the
selective A_1 antagonist, 8-cyclopentyl-1,3-dipropylxanosine agonists, cyclohexyladenosine, N-ethylcarboxami-
doadenosine, and R-phenylisopropyladenosine, and the
selective A₁ antagonist, 8-cyclopentyl-1,3-dipropylxan-
thine, demonstrated that adenosine-dependent decreases
i selective A_1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine, demonstrated that adenosine-dependent decreases
in cerebellar cGMP were A_1 receptor mediated (Wood et al., 1989b).
Although these decreases in cerebellar lective A_1 antagonist, 8-cyclopentyl-1,3-dipropylxan-
ine, demonstrated that adenosine-dependent decreases
cerebellar cGMP were A_1 receptor mediated (Wood et
c. 1989b).
Although these decreases in cerebellar cGMP we

thine, demonstrated that adenosine-dependent decreases time
in cerebellar cGMP were A_1 receptor mediated (Wood et cGM
al., 1989b).
Although these decreases in cerebellar cGMP were leve
probably mainly evoked via A_1 in cerebellar cGMP were A_1 receptor mediated (Wood et cal., 1989b).

Although these decreases in cerebellar cGMP were leprobably mainly evoked via A_1 receptors present on faranule cells, the parallel inhibitory effe al., 1989b).

Although these decreases in cerebellar cGMP were

probably mainly evoked via A_1 receptors present on

granule cells, the parallel inhibitory effects of these drugs

on nigrostriatal dopamine release (Wood Although these decreases in cerebellar cGMP were lever probably mainly evoked via A_1 receptors present on fectranule cells, the parallel inhibitory effects of these drugs dison nigrostriatal dopamine release (Wood et a probably mainly evoked via A_1 receptors present on fects of phenobarbital were not reversed by the benzo-
granule cells, the parallel inhibitory effects of these drugs diazepine receptor antagonist, flumazenil (Mohler V.B.1). Improstriatal dopamine release (Wood et al., 1989b
Bo may have contributed to some of the net effect, vicreased mossy fiber input to the cerebellum (section B.1).
4. *Ethanol*. Ethanol has been shown to decrease base
Inter

also may have contributed to some of the net effect, via
decreased mossy fiber input to the cerebellum (section
V.B.1).
4. *Ethanol*. Ethanol has been shown to decrease base-
line levels of cerebellar cGMP (Dodson and John decreased mossy fiber input to the cerebellum (section by.B.1).

4. Ethanol. Ethanol has been shown to decrease base-

line levels of cerebellar cGMP (Dodson and Johnson, 1979; Ferko et al., 1982; Mailman et al., 1979; Moh V.B.1).
4. *Ethanol*. Ethanol has been shown to decrease ba
line levels of cerebellar cGMP (Dodson and Johns
1979; Ferko et al., 1982; Mailman et al., 1979; Mohler
al., 1981; Volicer and Hurter, 1977; Volicer and Kloso
icz 4. Ethanol. Ethanol has been shown to decrease base-

line levels of cerebellar CGMP (Dodson and Johnson, Ca

1979; Ferko et al., 1982; Mailman et al., 1979; Mohler et

the al., 1981; Volicer and Hurter, 1977; Volicer and line levels of cerebellar cGMP (Dodson and Johnson, 1979; Ferko et al., 1982; Mailman et al., 1979; Mohler et al., 1981; Volicer and Hurter, 1977; Volicer and Klosowicz, 1979) with no tolerance being observed after 1 week 1979; Ferko et al., 1982; Mailman et al., 1979; Mohler et the al., 1981; Volicer and Hurter, 1977; Volicer and Klosow-sicz, 1979) with no tolerance being observed after 1 week ported after 12 days of Number to the asses be al., 1981; Volicer and Hurter, 1977; Volicer and Klosow-
icz, 1979) with no tolerance being observed after 1 week
of chronic treatment (Dodson and Johnson, 1980), al-
though tolerance has been reported after 12 days of
tre icz, 1979) with no tolerance being observed after 1 week pat
of chronic treatment (Dodson and Johnson, 1980), al-
though tolerance has been reported after 12 days of Na
treatment (Breese et al., 1979b). However, during alc though tolerance has been reported after 12 days of Nahrwold et al., 1977) and ether (Lust et al., 1976), also
treatment (Breese et al., 1979b). However, during alcohol dose dependently decreased basal cGMP levels. Simi-
w treatment (Breese et al., 1979b). However, during alcohol withdrawal, significant increases in cerebellar cGMP (Ferko et al., 1982) and an increased sensitivity to the depressant actions of alcohol on cGMP (Breese et al., treatment (Breese et
withdrawal, signific
(Ferko et al., 1982)
depressant actions
1979b) were noted.
A role for the mo thdrawal, significant increases in cerebellar cGMP larly
erko et al., 1982) and an increased sensitivity to the afte
pressant actions of alcohol on cGMP (Breese et al., 6.
79b) were noted. ATO
A role for the motor-depressa

(Ferko et al., 1982) and an increased sensitivity to the
depressant actions of alcohol on cGMP (Breese et al.,
1979b) were noted.
A role for the motor-depressant actions of alcohol in
the ethanol-dependent decreases in cGM depressant actions of alcohol on cGMP (Breese et al., 1979b) were noted. A
A role for the motor-depressant actions of alcohol in the ethanol-dependent decreases in cGMP has been sug-
gested (Breese et al., 1979b); however, 1979b) were noted.

A role for the motor-depressant actions of alcohol in

the ethanol-dependent decreases in CGMP has been sug-

gested (Breese et al., 1979b); however, in rats paralyzed

with *d*-tubocurarine and mechani A role for the motor-depressant actions of alcohol
the ethanol-dependent decreases in cGMP has been s
gested (Breese et al., 1979b); however, in rats paraly
with *d*-tubocurarine and mechanically ventilated, alco
still sig lum. with d-tubocurarine and mechanically ventilated, alcohol
still significantly depressed cGMP levels in the cerebel-
lum.
In addition to decreasing basal cerebellar cGMP,

still significantly depressed cGMP levels in the cerebel-
lum.
In addition to decreasing basal cerebellar cGMP,
ethanol also antagonizes harmaline-dependent increases
in cGMP (Rappaport et al., 1984), suggesting an antagstill significantly depressed cGMP levels in the cereb-
lum.
In addition to decreasing basal cerebellar cGM
ethanol also antagonizes harmaline-dependent increas-
in cGMP (Rappaport et al., 1984), suggesting an anta-
onism lem. 1988
In addition to decreasing basal cerebellar cGMP, man
ethanol also antagonizes harmaline-dependent increases studi
in cGMP (Rappaport et al., 1984), suggesting an antag-
onism of EAA-mediated transmission in the c In addition to decreasing basal cerebellar cGMP, methanol also antagonizes harmaline-dependent increases stincGMP (Rappaport et al., 1984), suggesting an antagonism of EAA-mediated transmission in the cerebellum respection ethanol also antagonizes harmaline-dependent increases
in cGMP (Rappaport et al., 1984), suggesting an antag-
onism of EAA-mediated transmission in the cerebellum
(section III.B.6). Furthermore, the mechanism of action
of in cGMP (Rappaport et al., 1984), suggesting an antag-
onism of EAA-mediated transmission in the cerebellum
(section III.B.6). Furthermore, the mechanism of action (I
of ethanol, as assessed in granule cell cultures, appea onism of EAA-mediated transmission in the cerebellum
(section III.B.6). Furthermore, the mechanism of action
of ethanol, as assessed in granule cell cultures, appears
to involve antagonism of NMDA-mediated activation of
gu (section III.B.6). Furthermore, the mechanism of action
of ethanol, as assessed in granule cell cultures, appears
to involve antagonism of NMDA-mediated activation of
guanylate cyclase (Hoffman et al., 1989a,b). In support of ethanol, as assessed in granule cell cultures, appears
to involve antagonism of NMDA-mediated activation of
guanylate cyclase (Hoffman et al., 1989a,b). In support
of this mechanism of action, the benzodiazepine recepto to involve antagonism of NMDA-mediated activation of negranylate cyclase (Hoffman et al., 1989a,b). In support mof this mechanism of action, the benzodiazepine receptor 1) antagonist, flumazenil, did not alter the depressa guanylate cyclase (Hoffman et al., 1989a,b). In suppose of this mechanism of action, the benzodiazepine recept antagonist, flumazenil, did not alter the depressant effects of ethanol on cerebellar cGMP, indicating a lack G of this mechanism
antagonist, fluma
fects of ethanol of
GABAergic involuer et al., 1981).
Chronic lithiur tagonist, flumazenil, did not alter the depressant ef-
ts of ethanol on cerebellar cGMP, indicating a lack of
prese.
ABAergic involvement in the actions of ethanol (Moh-
in the actions of ethanol (Moh-
in the actions of th

fects of ethanol on cerebellar cGMP, indicating a lack of pre

GABAergic involvement in the actions of ethanol (Mohnicle et al., 1981).

ler et al., 1981).

Chronic lithium treatment (2 mEq of LiCl/kg for 10 ule

days) has GABAergic involvement in the actions of ethanol (Mohler et al., 1981).

Chronic lithium treatment (2 mEq of LiCl/kg for 10

days) has been shown to block the decreases in cGMP

induced by 3 g/kg of ethanol (Hunt and Goldma ler et al., 1981).

Chronic lithium treatment (2 mEq of LiCl/kg for 10 uldays) has been shown to block the decreases in cGMP trinduced by $3 g/kg$ of ethanol (Hunt and Goldman, 1979); Nowever, under these conditions the bloo Chronic lithium treatment $(2 \text{ mEq of LiCl/kg}$ for 10 undays) has been shown to block the decreases in cGMP timeduced by $3 g/kg$ of ethanol (Hunt and Goldman, 1979); Nunder these conditions the blood levels of nethanol were reduc lithium. duced by 3 g/kg of ethanol (Hunt and Goldman, 1979);
 wever, under these conditions the blood levels of no

hanol were reduced to 35% of those in rats not receiving

hium.

5. *Barbiturates and anesthetics*. Pentobarbita

however, under these conditions the blood levels of
ethanol were reduced to 35% of those in rats not receiving
lithium.
5. Barbiturates and anesthetics. Pentobarbital (Dodson
and Johnson, 1980; Kant et al., 1980; Katz and ethanol were reduced to 35% of those in rats not receiving
lithium.
5. Barbiturates and anesthetics. Pentobarbital (Dodson
and Johnson, 1980; Kant et al., 1980; Katz and Catravas,
1976; Mailman et al., 1979; Morgan and Pfe al., 5. Barbiturates and anesthetics. Pentobarbital (Dodson Hand Johnson, 1980; Kant et al., 1980; Katz and Catravas, loc.
1976; Mailman et al., 1979; Morgan and Pfeil, 1984; int.
Opmeer et al., 1976), phenobarbital (Ferre

WOOD
r- Kinscherf, 1977; Mailman et al., 1979; Morgan and Pfeil,
n- 1984). and barbital (Lane and Morgan. 1984) dose and D
Kinscherf, 1977; Mailman et al., 1979; Morgan and Pfeil,
1984), and barbital (Lane and Morgan, 1984) dose and
time dependently (Morgan and Pfeil, 1984) decrease D
Kinscherf, 1977; Mailman et al., 1979; Morgan and Pfeil,
1984), and barbital (Lane and Morgan, 1984) dose and
time dependently (Morgan and Pfeil, 1984) decrease
basal cerebellar cGMP and tolerance develops to these Kinscherf, 1977; Mailman et al., 1979; Morgan and Pfeil, 1984), and barbital (Lane and Morgan, 1984) dose and time dependently (Morgan and Pfeil, 1984) decrease basal cerebellar cGMP and tolerance develops to these actions 1984), and barbital (Lane and Morgan, 1984) dose and
time dependently (Morgan and Pfeil, 1984) decrease
basal cerebellar cGMP and tolerance develops to these
actions. Interestingly, there is a dissociation between the
time time dependently (Morgan and Pfeil, 1984) decrease
basal cerebellar cGMP and tolerance develops to these
actions. Interestingly, there is a dissociation between the
time course of recovery to the motor-depressant and
cGMP basal cerebellar cGMP and tolerance develops to these
actions. Interestingly, there is a dissociation between the
time course of recovery to the motor-depressant and
cGMP effects of pentobarbital, indicating a lack of coractions. Interestingly, there is a dissociation between the time course of recovery to the motor-depressant and cGMP effects of pentobarbital, indicating a lack of correlation between motor activity and cerebellar cGMP lev cGMP effects of pentobarbital, indicating a lack of correlation between motor activity and cerebellar cGMP levels (section II.E.1; Morgan and Pfeil, 1984). The eflevels (section II.E.1; Morgan and Pfeil, 1984). The effects of phenobarbital were not reversed by the benzo-
diazepine receptor antagonist, flumazenil (Mohler et al., 1981), indicating a lack of involvement of benzodiazep fects of phenobarbital were not reversed by the benzo-
diazepine receptor antagonist, flumazenil (Mohler et al.,
1981), indicating a lack of involvement of benzodiazepine
receptors in the actions of this drug. Also of inte diazepine receptor antagonist, flumazenil (Mohler et al., 1981), indicating a lack of involvement of benzodiazepine receptors in the actions of this drug. Also of interest, barbital withdrawal from dependent rats (8 weeks) 1981), indicating a lack of involvement of benzodiazepine
receptors in the actions of this drug. Also of interest
barbital withdrawal from dependent rats (8 weeks) has
been shown to result in a selective supersensitivity t receptors in the actions of this drug. Also of interest,
barbital withdrawal from dependent rats (8 weeks) has
been shown to result in a selective supersensitivity to
kainate-dependent increases in cerebellar cGMP (Mc-
Cas barbital withdrawal from dependent rats (8 weeks) has
been shown to result in a selective supersensitivity to
kainate-dependent increases in cerebellar cGMP (Mc-
Caslin and Morgan 1989); there was no augmentation of
the NM such a possible role for barbiturate modulation of
the NMDA or quisqualate response (III.B.6). These data
suggest a possible role for barbiturate modulation of EAA
pathways in vivo. Caslin and Morgan 1989); there was no augmentation of
the NMDA or quisqualate response (III.B.6). These data
suggest a possible role for barbiturate modulation of EAA
pathways in vivo. uslin and Morgan 1989); there was no augmentation of
e NMDA or quisqualate response (III.B.6). These data
ggest a possible role for barbiturate modulation of EAA
thways in vivo.
The general anesthetics, halothane (Kant et

the NMDA or quisqualate response (III.B.6). These data
suggest a possible role for barbiturate modulation of EAA
pathways in vivo.
The general anesthetics, halothane (Kant et al., 1980;
Nahrwold et al., 1977) and ether (Lu suggest a possible role for barbiturate modulation of EA
pathways in vivo.
The general anesthetics, halothane (Kant et al., 198
Nahrwold et al., 1977) and ether (Lust et al., 1976), als
dose dependently decreased basal cGM pathways in vivo.

The general anesthetics, halothane (Kant et al., 1980;

Nahrwold et al., 1977) and ether (Lust et al., 1976), also

dose dependently decreased basal cGMP levels. Simi-

larly, the local anesthetic, lidoc Nahrwold et al., 1977) and ether (Lust et al., 1976), also larly, the local anesthetic, lidocaine, decreased cGMP

dose dependently decreased basal cGMP levels. Simi-
larly, the local anesthetic, lidocaine, decreased cGMP
after parenteral administration (table 2).
6. Excitatory amino acid receptor modulators. a. EXCIT-
ATORY AMINO ACID larly, the local anesthetic, lidocaine, decreased cGMP
after parenteral administration (table 2).
6. Excitatory amino acid receptor modulators. a. EXCIT-
ATORY AMINO ACID AGONISTS. Within the CNS there are
three major EAA after parenteral administration (table 2).
6. Excitatory amino acid receptor modulators. a. EXCIT-
ATORY AMINO ACID AGONISTS. Within the CNS there are
three major EAA receptor subtypes as characterized by
their selective a 6. Excitatory amino acid receptor modulators. a. EXCIT
ATORY AMINO ACID AGONISTS. Within the CNS there are three major EAA receptor subtypes as characterized b
their selective agonists: kainate, quiqualate, and NMDA
Additi ATORY AMINO ACID AGONISTS. Within the CNS there are
three major EAA receptor subtypes as characterized by
their selective agonists: kainate, quiqualate, and NMDA.
Additionally, the NMDA receptor is a macromolecular
complex three major EAA receptor subtypes as characterized by
their selective agonists: kainate, quiqualate, and NMDA.
Additionally, the NMDA receptor is a macromolecular
complex that also contains a positive allosteric glycine
si their selective agonists: kainate, quiqualate, and NMDA
Additionally, the NMDA receptor is a macromolecula
complex that also contains a positive allosteric glycin
site and a negative allosteric PCP site (Bertlino et al
198 complex that also contains a positive allosteric glycine site and a negative allosteric PCP site (Bertlino et al., 1988; Wood et al., 1989c). Within the cerebellum (Cotcomplex that also contains a positive allosteric glycine
site and a negative allosteric PCP site (Bertlino et al.,
1988; Wood et al., 1989c). Within the cerebellum (Cot-
man et al., 1987; Olson et al., 1987), autoradiograp 1988; Wood et al., 1989c). Within the cerebellum (Cotman et al., 1987; Olson et al., 1987), autoradiographic studies have demonstrated dense populations of quisqualate receptors on Purkinje cell dendrites and kainate recep studies have demonstrated dense populations of quis-
qualate receptors on Purkinje cell dendrites and kainate
receptors on granule cells. Electrophysiological studies
(DuPont et al., 1984) have demonstrated that these denqualate receptors on Purkinje cell dendrites and kainate dritic quisqualate receptors are functionally coupled to
neuronal activity changes. In brain slices from Nervous
mice, possessing reduced Purkinje cell populations (table receptors on granule cells. Electrophysiological studies
(DuPont et al., 1984) have demonstrated that these den-
dritic quisqualate receptors are functionally coupled to
neuronal activity changes. In brain slices from Nerv (DuPont et al., 1984) have demonstrated that these dendritic quisqualate receptors are functionally coupled to
neuronal activity changes. In brain slices from Nervous
mice, possessing reduced Purkinje cell populations (tab dritic quisqualate receptors are functionally coupled to
neuronal activity changes. In brain slices from Nervous
mice, possessing reduced Purkinje cell populations (table
1), kainate still stimulates cGMP formation (Schmid neuronal activity changes. In brain slices from Nervous
mice, possessing reduced Purkinje cell populations (table
1), kainate still stimulates cGMP formation (Schmidt
and Nadi, 1977); this finding is consistent with the
pr mice, possessing reduced Purkinje cell populations (table 1), kainate still stimulates cGMP formation (Schmidt and Nadi, 1977); this finding is consistent with the presence of kainate receptors on granule cells. Small numb 1), kainate still stimulates cGMP formation (Schmid and Nadi, 1977); this finding is consistent with the presence of kainate receptors on granule cells. Small numbers of NMDA receptors also were shown to be resident on gra and Nadi, 1977); this finding is consistent with the presence of kainate receptors on granule cells. Smal numbers of NMDA receptors also were shown to be resident on granule cells, consistent with data from gran ule cell c numbers of NMDA receptors also were shown to be resident on granule cells, consistent with data from granule cell cultures (section II.F.3). Biochemical and electrophysiological studies also support the presence of ule cell cultures (section II.F.3). Biochemical and electrophysiological studies also support the presence of NMDA receptors on the terminals of afferent noradre-
nergic nerve endings in the cerebellum (Marwaha et al., resident on granule cells, consistent with data from granule cell cultures (section II.F.3). Biochemical and electrophysiological studies also support the presence of NMDA receptors on the terminals of afferent noradrenerg ule cell cultures (section II.F.3). Biochemical and electrophysiological studies also support the presence of NMDA receptors on the terminals of afferent noradre-
nergic nerve endings in the cerebellum (Marwaha et al., 198 trophysiolo
NMDA rec
nergic nerv
1980, 1981;
al., 1988).
Presumal 1980, 1981; Rao et al., 1990h; Wood and Rao, 1990; Yi et al., 1988).
Presumably, as a result of these strategic receptor

nergic nerve endings in the cerebellum (Marwaha et al., 1980, 1981; Rao et al., 1990h; Wood and Rao, 1990; Yi et al., 1988).

Presumably, as a result of these strategic receptor

localizations, NMDA, quisqualate, and kaina 1980, 1981; Rao et al., 1990h; Wood and Rao, 1990; Y
al., 1988).
Presumably, as a result of these strategic recep
localizations, NMDA, quisqualate, and kainate, a
intraventricular (McCaslin and Morgan, 1989), intra
ternal al., 1988).
 Presumably, as a result of these strategic recepto

localizations, NMDA, quisqualate, and kainate, afte

intraventricular (McCaslin and Morgan, 1989), intracis

ternal (Wood et al., 1982), and direct intrace

cGMP IN THE CEREBELLUM
(Wood et al., 1987, 1989a,d; Wood and Rao 1989; Wrob-
leweski et al., 1987) injections, increase cerebellar cGMP further defin CGMP IN THE CER
(Wood et al., 1987, 1989a,d; Wood and Rao 1989; Wrobleweski et al., 1987) injections, increase cerebellar cGMP
in a dose-dependent manner (fig. 2). Analyses of the having **in a** dose-dependent manner (fig. 2). Analyses of the interactions of NMDA with its receptor also suggest that bien interactions of NMDA with its receptor also suggest that bien **interactive CI** interactions of NMDA with its receptor also suggest that two to three molecules of NMDA with its receptor also suggest that two to three molecules of NMDA are required for actions. (Wood et al., 1987, 1989a,d; Wood and Rao 1989; Wrobleweski et al., 1987) injections, increase cerebellar cGMF in a dose-dependent manner (fig. 2). Analyses of the interactions of NMDA with its receptor also suggest that t leweski et al., 1987) injections, increase cerebellar cGMP
in a dose-dependent manner (fig. 2). Analyses of the
interactions of NMDA with its receptor also suggest that
two to three molecules of NMDA are required for actiinteractions of NMDA with its receptor also suggest that bitwo to three molecules of NMDA are required for activation of each NMDA receptor unit (Wood et al., 1989a), C an observation previously reported for the interactio **(Brookes** and Werman, 1973). tion of each NMDA receptor unit (Wood et al., 1989
 Interferent of the interaction

ABA with the GABA/benzodiazepine receptor comp

rookes and Werman, 1973).

Interestingly, during barbital withdrawal from depent

rats,

ent rats, there is a selective sensitization of cerebellar qualate (McCaslin and Morgan, 1989), suggesting an (Brookes and Werman, 1973). C. (Interestingly, during barbital withdrawal from depend-
ent rats, there is a selective sensitization of cerebellar bell
cGMP responses to kainate but not to NMDA or quis-
qualate (McCaslin an Interestingly, during barbital withdrawal from depend-
ent rats, there is a selective sensitization of cerebellar bell:
cGMP responses to kainate but not to NMDA or quis-
qualate (McCaslin and Morgan, 1989), suggesting an ent rats, there is a selective sensitization of cerebellar belcGMP responses to kainate but not to NMDA or quisqualate (McCaslin and Morgan, 1989), suggesting an patindependent kainate receptor action. The increases in cli cGMP responses to kainate but not to NMDA or quis-
qualate (McCaslin and Morgan, 1989), suggesting an
independent kainate receptor action. The increases in
cerebellar cGMP induced by intracerebellar kainate peak
at 30 min qualate (McCaslin and Morgan, 1989), suggesting an independent kainate receptor action. The increases in cerebellar cGMP induced by intracerebellar kainate peak at 30 min and are maintained for 5 h (Biggio et al., 1978d). independent kainate receptor action. The increases cerebellar cGMP induced by intracerebellar kainate pear at 30 min and are maintained for 5 h (Biggio et a 1978d). However, by 24 h, when cell death has occurre cGMP level cerebellar cGMP induced by intracerebellar kainate peak
at 30 min and are maintained for 5 h (Biggio et al.,
1978d). However, by 24 h, when cell death has occurred,
cGMP levels decrease to 20% of control and are main-
tain at 30 min and are maintained for 5 h (Biggio et al., 1978d). However, by 24 h, when cell death has occurred, cGMP levels decrease to 20% of control and are maintained at this low level for at least 72 h (Biggio et al., 197 1978d). However, by 24 h, when cell death has occurred, cGMP levels decrease to 20% of control and are maintained at this low level for at least 72 h (Biggio et al., 1978d). Additionally, these kainate lesions block harmal cGMP levels decrease to 20%
tained at this low level for a
1978d). Additionally, these k
maline- and isoniazid-depend
cGMP (Biggio et al., 1978d).
b. N-METHYL-D-ASPARTATE 1978d). Additionally, these kainate lesions block harmaline- and isoniazid-dependent increases in cerebellar cGMP (Biggio et al., 1978d).
 b. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE AG-

maline- and isoniazid-dependent increases in cerebellar
cGMP (Biggio et al., 1978d).
b. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE AG-
oNISTS. The NMDA-associated glycine receptor is a
positive allosteric site on the NMDA rec cGMP (Biggio et al., 1978d). at a
b. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE AG-
and NISTS. The NMDA-associated glycine receptor is a
positive allosteric site on the NMDA receptor complex
(Johnson and Archer, 1987; Monagha D. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE AG-
ONISTS. The NMDA-associated glycine receptor is a
positive allosteric site on the NMDA receptor complex
(Johnson and Archer, 1987; Monaghan et al., 1988) and
is analogous with positive allosteric site on the NMDA receptor complex (Johnson and Archer, 1987; Monaghan et al., 1988) and is analogous with the benzodiazepine/GABA receptor complex (Wood et al., 1989c). Glycine itself, after intra-ventr positive allosteric site on the NMDA receptor comple:
(Johnson and Archer, 1987; Monaghan et al., 1988) and
is analogous with the benzodiazepine/GABA recepto
complex (Wood et al., 1989c). Glycine itself, after intra
ventri (Johnson and Archer, 1987; Monaghan et al., 1988) and

is analogous with the benzodiazepine/GABA receptor

complex (Wood et al., 1989c). Glycine itself, after intra-

ventricular (Danysz et al., 1989;) or direct intracere is analogous with the benzodiazepine/GABA receptor

complex (Wood et al., 1989c). Glycine itself, after intra-

ventricular (Danysz et al., 1989;) or direct intracerebellar

in

(Rao et al., 1990d) injection, increases ce complex (Wood et al., 1989c). Glycine itself, after intra-
ventricular (Danysz et al., 1989;) or direct intracerebellar
(Rao et al., 1990d) injection, increases cerebellar cGMP
levels. Similarly, D-serine, a stereospecifi ventricular (Danysz et al., 1989;) or direct intracerebellar (Rao et al., 1990d) injection, increases cerebellar cGMP
levels. Similarly, D-serine, a stereospecific agonist for the
glycine receptor, which is not a substrate (Rao et al., 1990d) injection, increases cerebellar cGMP 19
levels. Similarly, D-serine, a stereospecific agonist for the
glycine receptor, which is not a substrate for amino acid
uptake carriers (Balcar and Johnson, 1973 levels. Similarly, D-serine, a stereospecific agonist for the glycine receptor, which is not a substrate for amino acid uptake carriers (Balcar and Johnson, 1973), dose dependently increases cerebellar cGMP with an efficac glycine receptor, which is not a substrate for amino acid uptake carriers (Balcar and Johnson, 1973), dose dependently increases cerebellar cGMP with an efficacy approximately one-half that of NMDA (Wood et al., 1989a). Th uptake carriers (Balcar and Johnson, 1973), dose dependently increases cerebellar cGMP with an efficacy approximately one-half that of NMDA (Wood et al., 1989a). The partial glycine agonist, D-cycloserine (Emmett et al., 1 pendently increases cerebellar cGMP with an effica
approximately one-half that of NMDA (Wood et a
1989a). The partial glycine agonist, p-cycloserine (E.
mett et al., 1990), also increases cGMP levels after eith
parenteral approximately one-half that of NMDA (Wood et al
1989a). The partial glycine agonist, D-cycloserine (Em
mett et al., 1990), also increases cGMP levels after eithe
parenteral or direct intracerebellar drug administration
but 1989a). The partial glycine agonist, D-cycloserine (Emmett et al., 1990), also increases cGMP levels after either parenteral or direct intracerebellar drug administration, but in these cases the drug produces bell-shaped d 1990).

in a dose-dependent manner (fig. 2). Analyses of the have demonstrated extremely high levels of glycine (Ca-
interactions of NMDA with its receptor also suggest that bier and Pessac, 1987). The anatomical proximity of glia EREBELLUM 13

The source of endogenous glycine in vivo requires

further definition; however, studies of cerebellar astroglia

have demonstrated extremely high levels of glycine (Ca-13

The source of endogenous glycine in vivo requires

further definition; however, studies of cerebellar astroglia

have demonstrated extremely high levels of glycine (Ca-

bier and Pessac, 1987). The anatomical proximity The source of endogenous glycine in vivo requires
further definition; however, studies of cerebellar astroglia
have demonstrated extremely high levels of glycine (Ca-
bier and Pessac, 1987). The anatomical proximity of gli The source of endogenous glycine in vivo requires
further definition; however, studies of cerebellar astroglia
have demonstrated extremely high levels of glycine (Ca-
bier and Pessac, 1987). The anatomical proximity of gli further definition; however, studies of cerebellar astroglia
have demonstrated extremely high levels of glycine (Ca-
bier and Pessac, 1987). The anatomical proximity of glial
cells to nerve terminals (Hatten et al., 1984; have demonstrated extremely high levels of glycine (Cabier and Pessac, 1987). The anatomical proximity of glial cells to nerve terminals (Hatten et al., 1984; Palay and Chan-Palay, 1974; Reese et al., 1985) suggests that t of and Fessac, 1567). The anatom
cells to nerve terminals (Hatten et
Chan-Palay, 1974; Reese et al., 19
may be an important pool of glycin
of NMDA-mediated neurotransmis
c. ENDOGENOUS EXCITATORY A Chan-Palay, 1974; Reese et al., 1985) suggests that this
may be an important pool of glycine for the modulation
of NMDA-mediated neurotransmission.
c. ENDOGENOUS EXCITATORY AMINO ACID RELEASE.
Although the identity of EAA

maline- and isoniazid-dependent increases in cerebellar antagonists (Wood et al., 1987, 1989c), NMDA-associ-

CGMP (Biggio et al., 1978d).

b. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE AG-

oNISTS. The NMDA-associated glycin c. ENDOGENOUS EXCITATORY AMINO ACID RELEASE.
Although the identity of EAA transmitters in the cere-
bellum has not been unequivocally demonstrated, phar-
macological tools are available to activate EAA-utilizing of NMDA-mediated neufotrafismission.

c. ENDOGENOUS EXCITATORY AMINO ACID RELEASE.

Although the identity of EAA transmitters in the cere-

bellum has not been unequivocally demonstrated, phar-

macological tools are avail exercises and the identity of EAA transmitters in the cerebellum has not been unequivocally demonstrated, pharmacological tools are available to activate EAA-utilizing pathways. These include harmaline which activates clim climbing fiber inputs to the cerebellum has not been unequivocally demonstrated, pharmacological tools are available to activate EAA-utilizing pathways. These include harmaline which activates climbing fiber inputs to the macological tools are available to activate EAA-difficulty
pathways. These include harmaline which activates
climbing fiber inputs to the cerebellum (Guidotti et al.,
1975; Wood et al., 1982) and pentylenetetrazol which
i pathways. These include harmanne which activates
climbing fiber inputs to the cerebellum (Guidotti et al.,
1975; Wood et al., 1982) and pentylenetetrazol which
inhibits GABAergic synapses allowing excessive EAA
transmissio dose-dependent increases in cerebellar cGMP levels that

are antagonized by competitive NMDA antagonized

are antagonized by competitive NMDA antagonists

(Wood et al., 1982, 1987, 1989c), noncompetitive NMDA

(Wood et al. inhibits GABAergic synapses allowing excessive EAA

transmission (Wood et al., 1990a). These drugs elicit

dose-dependent increases in cerebellar cGMP levels that

are antagonized by competitive NMDA antagonists

(Wood et dose-dependent increases in cerebellar cGMP levels that are antagonized by competitive NMDA antagonists dose-dependent increases in cerebellar cGMP levels that
are antagonized by competitive NMDA antagonists
(Wood et al., 1982, 1987, 1989c), noncompetitive NMDA
antagonists (Wood et al., 1987, 1989c), NMDA-associ-
ated glycin are antagonized by competitive NMDA antagonists
(Wood et al., 1982, 1987, 1989c), noncompetitive NMDA
antagonists (Wood et al., 1987, 1989c), NMDA-associ-
ated glycine receptor antagonists (Wood et al., 1989d),
and inhibit (Wood et al., 1982, 1987, 1989c), none
antagonists (Wood et al., 1987, 1989
ated glycine receptor antagonists (W
and inhibitors of NO synthase (W
Wood, 1990; Wood and Rao, 1990).
d. ROLE OF NITRIC OXIDE. The b tagonists (Wood et al., 1987, 1989c), NMDA-associenties (Wood et al., 1989d), displaying receptor antagonists (Wood et al., 1989d), displaying including the biosynthesis of NO synthase (Role of NO synthase (Bredt and Snyde

ated glycine receptor antagonists (Wood et al., 1989d), and inhibitors of NO synthase (Wood et al., 1990b; Wood, 1990; Wood and Rao, 1990).

d. ROLE OF NITRIC OXIDE. The biosynthesis of NO from arginine, via NO synthase (B and initiations of NO synthase (wood et al., 1990b),
Wood, 1990; Wood and Rao, 1990).
d. ROLE OF NITRIC OXIDE. The biosynthesis of NO
from arginine, via NO synthase (Bredt and Snyder,
1990), is a signal transduction mechan d. ROLE OF NITRIC OXIDE. The biosynthesis of NO
from arginine, via NO synthase (Bredt and Snyder,
1990), is a signal transduction mechanism (section III.A)
that has been shown to be stimulated by EAA agonists
in vitro (Bre d. ROLE OF NITRIC OXIDE. The Diosynthesis of NO
from arginine, via NO synthase (Bredt and Snyder,
1990), is a signal transduction mechanism (section III.A)
that has been shown to be stimulated by EAA agonists
in vitro (Bre 1990), is a signal transduction mechanism (section III.A)
that has been shown to be stimulated by EAA agonists
in vitro (Bredt and Snyder, 1989; Garthwaite et al., 1988,
1989a,b). Similarly, the NO synthase inhibitor, N-mo that has been shown to be stimulated by EAA agonists
in vitro (Bredt and Snyder, 1989; Garthwaite et al., 1988,
1989a,b). Similarly, the NO synthase inhibitor, N-mon-
omethyl-L-arginine, has been shown to decrease basal
cG In viro (Diedi and Shyder, 1565, Gardiwalde et al., 1566, 1989a,b). Similarly, the NO synthase inhibitor, N-mon-
omethyl-L-arginine, has been shown to decrease basal
cGMP levels and to block NMDA-, quisqualate-, and
kainat 1999a, 9). Similarly, the NO synthase inhibitor, N-mon-

omethyl-L-arginine, has been shown to decrease basal

cGMP levels and to block NMDA-, quisqualate-, and

kainate-dependent increases in cGMP in vivo (Wood et

al., 1 1975; Wood et al., 1982) and pentylenetetrazol which indities GABAergic synspess allowing excessive EAA transmission (Wood et al., 1990a). These drugs elicit dose-dependent increases in cerebellar GGMP levels that are ant cGMP levels and to block NMDA-, quisqualate-, and
kainate-dependent increases in cGMP in vivo (Wood et
al., 1990b; Wood and Rao, 1990; Wood, 1990; table 4).
These data indicate that NO formation is stimulated by
all three kainate-dependent increases in cGMP in vivo (Wood et al., 1990); Wood and Rao, 1990; Wood, 1990; table 4).
These data indicate that NO formation is stimulated by all three EAA receptor subtypes in vivo and that the diffusi al., 1990b; Wood and Rao, 1990; Wood, 1990; table 4).
These data indicate that NO formation is stimulated by
all three EAA receptor subtypes in vivo and that the
diffusible intercellular messenger, NO, then activates
guany These data mulcate that NO formation is stimulated by
all three EAA receptor subtypes in vivo and that the
diffusible intercellular messenger, NO, then activates
guanylate cyclase in a number of cerebellar cell types
(sect diffusible intertential messenger, NO, then activates
guanylate cyclase in a number of cerebellar cell types
(section III.A). The Ca²⁺ dependency of NO synthase
(Bredt and Snyder, 1990) is consistent with prior reports
 (section III.A). The Ca²⁺ dependency of N
(Bredt and Snyder, 1990) is consistent with p
that pharmacological activation of cerebellar
a variety of mechanisms, was Ca^{2+} dependen
These studies encompassed cerebellar sl (Bredt and Snyder, 1990) is consistent with prior reports
that pharmacological activation of cerebellar cGMP, via
a variety of mechanisms, was Ca^{2+} dependent.
These studies encompassed cerebellar slices (Ferrenthat pharmacological activation of cerebellar cGMP, via

that pharmacological activation of cerebellar cGMP,
a variety of mechanisms, was Ca²⁺ dependent.
These studies encompassed cerebellar slices (Fer
delli et al., 1973), cultured granule cells (Novelli
Henneberry, 1987), an a variety of mechanisms, was Ca^{2+} dependent.

These studies encompassed cerebellar slices (Ferren-

delli et al., 1973), cultured granule cells (Novelli and

Henneberry, 1987), and in vivo studies with intracere-

bell These studies encompasse
delli et al., 1973), cultured
Henneberry, 1987), and in v
bellar injections of the Ca²⁺
Wood, unpublished results).
e. ROLE OF NORADRENERG Henneberry, 1987), and in vivo studies with intracere-
bellar injections of the Ca²⁺ antagonist, diltiazem (P. L.
Wood, unpublished results).
e. ROLE OF NORADRENERGIC AFFERENTS. The cerebel-

Henneberry, 1987), and in vivo studies with intracere-
bellar injections of the Ca²⁺ antagonist, diltiazem (P. L.
Wood, unpublished results).
e. ROLE OF NORADRENERGIC AFFERENTS. The cerebel-
lum receives an extensive nor e. ROLE OF NORADRENERGIC AFFERENTS. The cere
lum receives an extensive noradrenergic fiber input f
the locus coeruleus and other pontine noradrenergic
clei (Bloom et al., 1971; Olsen and Fuxe, 1971). Addit
ally, biochemica e. ROLE OF NORADRENERGIC AFFERENTS. The cereber-
lum receives an extensive noradrenergic fiber input from
the locus coeruleus and other pontine noradrenergic nu-
clei (Bloom et al., 1971; Olsen and Fuxe, 1971). Addition-
a the locus coeruleus and other pontine noradrenergic nuclei (Bloom et al., 1971; Olsen and Fuxe, 1971). Additionally, biochemical studies with cerebellar slices have shown that presynaptic NMDA/PCP receptors regulate norepi the locus coeruleus and other pontine noradrenergic nuclei (Bloom et al., 1971; Olsen and Fuxe, 1971). Additionally, biochemical studies with cerebellar slices have shown that presynaptic NMDA/PCP receptors regulate norepi clei (Bloom et al., 1971; Olsen and Fuxe, 1971). Additionally, biochemical studies with cerebellar slices have
shown that presynaptic NMDA/PCP receptors regulate
norepinephrine release from these nerve endings in the
cere shown that presynaptic NMDA/PCP receptors regulate
norepinephrine release from these nerve endings in the
cerebellum (Yi et al., 1988). In vivo, norepinephrine and
selective α_1 -noradrenergic agonists have been shown t

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

TABLE 4 *Modulation of cerebellar cGMP by the NO synthetase inhibitor,* NMMA

Drug Treatment $(\mu$ g, intracerebellar) [mg/kg, sc]	cGMP (% control)	1.0 ₁ हु 0.5	
NMMA (10)	68		
NMMA (25)	65	$0.0 -$ -0.5	
NMMA (50)	53		
NMMA (100)	54		
$NMMA (100) + L-arginine (200)$	100	$-1.0 -$	
L-Arginine (200)	100	0.7	
Quisqualate (5)	1184		
Quisqualate $(5) + NMMA (100)$	228	FIG. 3. Logit-l	
Kainate (0.3)	1199		
Kainate (0.3) + NMMA (100)	482	ebellar cGMP ind	
D-Serine (200)	279	and the noncomp min).	
D-Serine (200) + NMMA (25)	100		
D-Serine (200) + NMMA (100)	100		
Harmaline [100]	935	D-serine-, har increases in ce	
Harmaline $[100] + NMMA (50)$	277		
PTZ [50]	395		
$PTZ [50] + NMMA (50)$	100	petitive NMD	

PTZ $[50]$ + NMMA (50) 100

* Abbreviations: NMMA, N-monomethyl-L-arginine; PTZ, pentyle-

netetrazol (Wood et al., 1990b). Intracerebellar antagonists treatments

were coinjections with agonist treatments which were al netetrazol (Wood et al., 1990b). Intracerebellar antagonists treatments
were coinjections with agonist treatments which were all 10 min prior
to microwave fixation.
increase cerebellar cGMP (Haidamous et al., 1980),

whereas α_1 antagonists decrease cGMP levels (Chung, metetrazol (Wood et al., 1990b). Intracerebellar antagonists treatments
were coinjections with agonist treatments which were all 10 min prior
to microwave fixation.
increase cerebellar cGMP (Haidamous et al., 1980),
where were comjections with agonist treatments which were all 10 min prior
to microwave fixation.
increase cerebellar cGMP (Haidamous et al., 1980),
whereas α_1 antagonists decrease cGMP levels (Chung,
1983; Haidamous et al. increase cerebellar cGMP (Haidamous et al., 1980)
whereas α_1 antagonists decrease cGMP levels (Chung
1983; Haidamous et al., 1980). These data suggest that
there might be a tonic noradrenergic input which posi-
tively increase cerebellar cGMP (Haidamous et al., 1980),
whereas α_1 antagonists decrease cGMP levels (Chung,
1983; Haidamous et al., 1980). These data suggest that
there might be a tonic noradrenergic input which posi-
tive whereas α_1 antagonists decrease cGMP levels (Chung, 1983; Haidamous et al., 1980). These data suggest that there might be a tonic noradrenergic input which positively modulates cGMP levels via an α_1 receptor subty 1983; Haidamous et al., 1980). These data suggest that
there might be a tonic noradrenergic input which posi-
tively modulates cGMP levels via an α_1 receptor subtype
and that the terminals of these noradrenergic affer these might be a tomc horal energic mput which positively modulates cGMP levels via an α_1 receptor subtype cand that the terminals of these noradrenergic afferent refibers can be positively driven by NMDA receptor ago fibers can be positively driven by NMDA receptor ago-
nists. Such a hypothesis is supported by the observations
competitive NMDA antagonists, does not alter basal
that the nonselective α_1 antagonist, clozapine, and th nists. Such a hypothesis is supported by the observations mists. Such a hypothesis is supported by the observations contact the nonselective α_1 antagonist, clozapine, and the cesselective antagonist, WB-4101, both can antagonize the this ability of NMDA, D-serine, harmaline, that the nonselective α_1 antagonist, clozapine, and the selective antagonist, WB-4101, both can antagonize the ability of NMDA, D-serine, harmaline, and pentylenete-
trazol to increase cGMP levels (Rao et al., 1990h; selective antagonist, WB-4101, both can antagonize the
ability of NMDA, D-serine, harmaline, and pentylenete-
trazol to increase cGMP levels (Rao et al., 1990h; Wood
and Rao, 1990). Of significance, these α_1 antagonis ability of NMDA, D-serine, harmaline, and pentylenete-
trazol to increase cGMP levels (Rao et al., 1990h; Wood
and Rao, 1990). Of significance, these α_1 antagonists
were unable to modify quisqualate-dependent increase trazol to increase cGMP levels (Rao et al., 1990h; Wood
and Rao, 1990). Of significance, these α_1 antagonists
were unable to modify quisqualate-dependent increases
in cGMP (Rao et al., 1990h), which would be consisten and Rao, 1990). Of significance, these α_1 antagonists
were unable to modify quisqualate-dependent increases
in cGMP (Rao et al., 1990h), which would be consistent
with the presence of quisqualate receptors on Purkinje were unable to modify quisqualate-dependent increases tag
in cGMP (Rao et al., 1990h), which would be consistent l
with the presence of quisqualate receptors on Purkinje NIS
cell dendrites and not on noradrenergic nerve en in cGMP (Rao et al., 1990h), which would be consistent
with the presence of quisqualate receptors on Purkinje
cell dendrites and not on noradrenergic nerve endings
q(Olson et al., 1987). These data are also consistent with with the presence of quisqualate receptors on Purkinje
cell dendrites and not on noradrenergic nerve endings
(Olson et al., 1987). These data are also consistent with
earlier electrophysiological studies from which it was
 cell dendrites and not on noradrenergic nerve endings
(Olson et al., 1987). These data are also consistent with
earlier electrophysiological studies from which it was
concluded that suppression of cerebellar Purkinje cell
 (Olson et al., 1987). These data are also consistent with 2,3-c earlier electrophysiological studies from which it was ebell concluded that suppression of cerebellar Purkinje cell How firing induced by PCP agonists was due earlier electrophysiological studies from which it
concluded that suppression of cerebellar Purkinje
firing induced by PCP agonists was due to presyna
inhibition of norepinephrine release in the cerebel
(Marwaha et al., 19 firing induced by PCP agonists was due to presynaptic
inhibition of norepinephrine release in the cerebellum
(Marwaha et al., 1980, 1981; Wang and Lee, 1989).
f. COMPETITIVE AND NONCOMPETITIVE N-METHYL-D-

ASPARTATE ANTAGONISTS. A number of linear and responsive in the cerebellum at the (Marwaha et al., 1980, 1981; Wang and Lee, 1989). 1981.

ASPARTATE ANTAGONISTS. A number of linear and rigid and phosphonic acid analogues inhibition of norepinephrine release in the cerebellum at the (Marwaha et al., 1980, 1981; Wang and Lee, 1989). 1989;
f. COMPETITIVE AND NONCOMPETITIVE N-METHYL-D-
ASPARTATE ANTAGONISTS. A number of linear and rigid and
ph Marwaha et al., 1980, 1981; Wang and Lee, 1989).

f. COMPETITIVE AND NONCOMPETITIVE N-METHYL-D-

ASPARTATE ANTAGONISTS. A number of linear and rigid

phosphonic acid analogues which are competitive NMDA

antagonists (Czucz f. COMPETITIVE AND NONCOMPETITIVE N-METHYL-D-
ASPARTATE ANTAGONISTS. A number of linear and rigid and
phosphonic acid analogues which are competitive NMDA ad
antagonists (Czuczwar and Meldrum, 1982; Lehmann et bu
al., 1988 phosphonic acid analogues which are competitive NMDA administration, do not alter basal cerebellar cGMP levels
antagonists (Czuczwar and Meldrum, 1982; Lehmann et but do antagonize the effects of NMDA and quisqualate
al., phosphonic acid analogues which are competitive NMDA ad
antagonists (Czuczwar and Meldrum, 1982; Lehmann et bu
al., 1988b, 1987) have been examined and all were found re
to dose dependently decrease basal cGMP levels (fig. antagonists (Czuczwar and Meldrum, 1982; Lehmann et bual., 1988b, 1987) have been examined and all were found red to dose dependently decrease basal cGMP levels (fig. 3), 19
thereby demonstrating their ability to antagoniz al., 1988b, 1987) have been examined and all were found rector dose dependently decrease basal cGMP levels (fig. 3), 19
thereby demonstrating their ability to antagonize the hasendogenously released EAA neurotransmitter(s) to dose dependently decrease basal cGMP levels (fig. 3),
thereby demonstrating their ability to antagonize the
endogenously released EAA neurotransmitter(s) in the
cerebellum (Wood et al., 1982, 1987, 1989c, 1990a; Wood
an

0.7 1.0 10.0
LOG DOSE
FIG. 3. Logit-log dose-response curves for decrements in basal cer-
ebellar cGMP induced by the competitive NMDA antagonist, (CPP),
and the noncompetitive NMDA receptor antagonist, tiletamine (30 LOG DOSE
FIG. 3. Logit-log dose-response curves for decrements in basal cer-
ebellar cGMP induced by the competitive NMDA antagonist, (CPP),
and the noncompetitive NMDA receptor antagonist, tiletamine (30
min). min). ebellar cGMP induced by the competitive NMDA antagon
and the noncompetitive NMDA receptor antagonist, tile
min).
D-serine-, harmaline-, and pentylenetetrazol-de
increases in cerebellar cGMP (tables 5 and 6).

and the honcompetitive NMDA receptor antagonist, thetamine (30 min).

D-serine-, harmaline-, and pentylenetetrazol-dependent

increases in cerebellar cGMP (tables 5 and 6). Noncom-

petitive NMDA antagonists, which act at D-serine-, harmaline-, and pentylenetetrazol-dependent
increases in cerebellar cGMP (tables 5 and 6). Noncom-
petitive NMDA antagonists, which act at the negatively
coupled PCP receptor component of the NMDA receptor
compl D-serine-, harmaline-, and pentylenetetrazol-dependencreases in cerebellar cGMP (tables 5 and 6). Nonco
petitive NMDA antagonists, which act at the negative
coupled PCP receptor component of the NMDA recep
complex (Wong et petitive NMDA antagonists, which act at the negatively
coupled PCP receptor component of the NMDA receptor
complex (Wong et al., 1986), also decrease basal cerebel-
lar cGMP levels (fig. 3) in a dose-dependent manner coupled PCP receptor component of the NMDA receptor
complex (Wong et al., 1986), also decrease basal cerebel-
lar cGMP levels (fig. 3) in a dose-dependent manner
(Wood et al., 1987, 1989a,c; Wood and Rao, 1990). These
agen complex (Wong et al., 1986), also decrease basal cerebelcomplex (Wong et al., 1986), also decrease basal cerebe
lar cGMP levels (fig. 3) in a dose-dependent manne
(Wood et al., 1987, 1989a,c; Wood and Rao, 1990). Thes
agents also antagonize the actions of D-serine, NMDA
harmali ar COMP leven
(Wood et al., 198
agents also anta
harmaline, and p
ate or quisqualat
g. N-METHYL-1 (wood et al., 1967, 1969a, c; wood and rao, 1990). I hese
agents also antagonize the actions of D-serine, NMDA,
harmaline, and pentylenetetrazol but not those of kain-
ate or quisqualate.
g. N-METHYL-D-ASPARTATE-ASSOCIATED

harmaline, and pentylenetetrazol but not those of kainate or quisqualate.

g. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE RECEPTOR ANTAGONISTS. The NMDA-associated glycine

receptor antagonist, HA-966 (Bonta et al., 1971; Meno ate or quisqualate.

g. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE RE

CEPTOR ANTAGONISTS. The NMDA-associated glycine

receptor antagonist, HA-966 (Bonta et al., 1971; Menon

1981; Wood et al., 1989d), unlike competitive and g. N-METHYL-D-ASPARTATE-ASSOCIATED GLYCINE RE-
CEPTOR ANTAGONISTS. The NMDA-associated glycine
receptor antagonist, HA-966 (Bonta et al., 1971; Menon,
1981; Wood et al., 1989d), unlike competitive and non-
competitive NMDA CEPTOR ANTAGONISTS. The NMDA-associated glycine
receptor antagonist, HA-966 (Bonta et al., 1971; Menon,
1981; Wood et al., 1989d), unlike competitive and non-
competitive NMDA antagonists, does not alter basal
cerebellar c 1981; Wood et al., 1989d), unlike competitive and non-1981; Wood et al., 1989d), unlike competitive and i
competitive NMDA antagonists, does not alter b
cerebellar cGMP levels (Wood et al., 1989c). Howe
this agent is able to antagonize the increases in cG
elicited by NMDA, Dcompetitive NMDA antagonists, does not alter be
cerebellar cGMP levels (Wood et al., 1989c). Howev
this agent is able to antagonize the increases in cGl
elicited by NMDA, D-serine, harmaline, and pentyle
tetrazol (table 6) cerebellar cGMP levels (Wood et al., 1989c). However, this agent is able to antagonize the increases in cGMP elicited by NMDA, D-serine, harmaline, and pentylene-tetrazol (table 6). Similar to competitive and noncompetitiv this agent is able to antagonize the increase
elicited by NMDA, D-serine, harmaline, and
tetrazol (table 6). Similar to competitive an
petitive NMDA antagonists, this agent is un
tagonize the effects of kainate or quisqual cited by NMDA, D-serine, harmatine, and pentyler
trazol (table 6). Similar to competitive and noncol
titive NMDA antagonists, this agent is unable to a
gonize the effects of kainate or quisqualate.
h. NONSELECTIVE EXCITATO

Letrazof (table 6). Similar to competitive and non
petitive NMDA antagonists, this agent is unable to
tagonize the effects of kainate or quisqualate.
h. NONSELECTIVE EXCITATORY AMINO ACID ANT
NISTS. The nonselective EAA an petitive NMDA antagonists, this agent is unatagonize the effects of kainate or quisqualate.

h. NONSELECTIVE EXCITATORY AMINO ACII

NISTS. The nonselective EAA antagonists, 6

quinoxaline-2,3-dione and 6-nitro,7-cyanoqu

2 Example the effects of Kalinate of quisqualate.

h. NONSELECTIVE EXCITATORY AMINO ACID ANTAGO-

NISTS. The nonselective EAA antagonists, 6,7-dinitro-

quinoxaline-2,3-dione, antagonize the actions of quisqualate on cer-

e NISTS. The nonselective EAA antagonists, 6,7-dinitro-
quinoxaline-2,3-dione and 6-nitro,7-cyanoquinoxaline-
2,3-dione, antagonize the actions of quisqualate on cer-
ebellar cGMP (Rao et al., 1990e; Wood et al., 1989d).
Ho 2,3-dione, antagonize the actions of quisqualate on cerebellar cGMP (Rao et al., 1990e; Wood et al., 1989d).
However, these agents also block D-serine and NMDA actions, presumably via their potent antagonist actions at the 2,3-ulone, antagonize the actions of quisquantie on cer-

ebellar cGMP (Rao et al., 1990e; Wood et al., 1989d).

However, these agents also block D-serine and NMDA

actions, presumably via their potent antagonist actions
 However, these agents also block D-serine and NMDA
actions, presumably via their potent antagonist actions
at the NMDA-associated glycine receptor (Kessler et al.,
1989; Rao et al., 1990e; table 6).
i. POLYAMINES. The endo

actions, presumably via their potent antagonist action
at the NMDA-associated glycine receptor (Kessler et al.
1989; Rao et al., 1990e; table 6).
i. POLYAMINES. The endogenous polyamines spermin
and spermidine (table 6), a at the NMDA-associated glycine receptor (Kessler et al., 1989; Rao et al., 1990e; table 6).

i. POLYAMINES. The endogenous polyamines spermine

and spermidine (table 6), after direct intracerebellar

administration, do not 1989; Kao et al., 1990e; table 6).
i. POLYAMINES. The endogenous polyamines spermine
and spermidine (table 6), after direct intracerebellar
administration, do not alter basal cerebellar cGMP levels
but do antagonize the ef receptor activation, do not alter basal cerebellar cGMP levels
administration, do not alter basal cerebellar cGMP levels
but do antagonize the effects of NMDA and quisqualate
receptor activation (Rao et al., 1990b,c; Wood administration, do not alter basal cerebellar cGMP levels administration, do not alter basal cerebellar cGMP levels
but do antagonize the effects of NMDA and quisqualate
receptor activation (Rao et al., 1990b,c; Wood and Rao,
1990) as well as endogenous EAA release evoked by
harm receptor activation (Rao et al., 1990b,c; Wood and Ra
1990) as well as endogenous EAA release evoked lammaline (Rao et al., 1990c). This nonselective profit
was suggested to possibly involve polyamine-depende
decreases in 990) as well as endogenous EAA release evoked by
urmaline (Rao et al., 1990c). This nonselective profile
as suggested to possibly involve polyamine-dependent
creases in intracellular calcium (Rao et al., 1990c).
j. SIGMA L

* Agonist treatments included: apomorphine (Apo) a dopamine agonist; amphetamine (Amph) a dopamine releaser; thyropropin-releasing CCK Yes Yes Yes Yes Yes Yes No - No
CPP - Yes - Yes Yes Yes Yes Yes Yes Yes Yes - Yes
Kainate - - - - Yes Yes Yes Yes Yes Yes Yes
Agonist treatments included: apomorphine (Apo) a dopamine agonist; amphetamine (Amph) a dopa (Picro) as a GABA-A antagonist; isoniazid (laos) as an inhibitor of GABA synthesis; and pentylesetetrazol (PTZ) as a convulsant; -, not tested. **^t** Antagonist: 3-acetylpyridise lesions of inferior olive to interrupt climbing fibers (Biggio et a!., l977c, d; Guidotti et a!., 1975; Mailman et

urate-omaing site
3 19755 to antagon
by granular cells (F
TABLE 6
increases in mouse V. Amount is the competitive NMDA and Kuressen (1989), CPP, AFS, AFP or COS 19755 to antagonist control (ERI) and antagonist behind the competitive NMDA and CHI and ^{*} Agonist treatments included: apomorphine (Apo) a dopamine agonist; amphetamine (Amph) a dopamine releaser; thyropropin-releasing hormone (TRH); oxotremorine (Oxo) or arecoline as a muscarinic agonist; harmaline (Harm) (Picro) as a GABA-A antagonist; isoniazid (Ison) as an inhibitor of GABA synthesis; and pentylenetetrazol (PTZ) as a convulsant; -, not tested.
† Antagonist: 3-acetylpyridine lesions of inferior olive to interrupt climbin (Picro) as a GABA-A antagonist; isoniazid (Ison) as an inhibitor of GABA synthesis; and pentylenetetrazol (PTZ) as a convulsant; -, not tested.

† Antagonist: 3-acetylpyridine lesions of inferior olive to interrupt climbi al., 1979); kainate lesions of striatum to interrupt mossy fiber pathways (Biggio et al., 1978a); α-methylparatyrosine (AMPT) treatments to inhibit dopamine synthesis (Narumi et al., 1983); haloperidol to block D-2 dopami were reversed; propranolol to block β -adrenergic receptors (Narumi et al., 1983); atropine or trihhexyphenidyl to block muscarinic receptors (Biggio et al., 1976; d; Burkard et al., 1985; Mailman et al., 1979; Opmeer e (Biggio et al., 1977c, d; Burkard et al., 1985; Mailman et al., 1979; Opmeer et al., 1976); baclofen as an agonist of GABA-B receptors (Gumulka et al., 1979); diazepam as a benzodiazepine agonist to potentiate GABA-A receptors (Biggio et al., 1977c, d; Mao et al., 1975a; Opmeer et al.,

Polyamines Yes Yes Yes Yes Yes Yes NT
Sigma ligands Yes No NT Yes NT NT
Ifenprodil Yes Yes NT NT
*Competitive NMDA antagonists: CPP and CGS 19755 (Lehmann et al., 1987; 1988a, b; Wood et al., 1987); noncompetitive NMDA
ant antagonist (Bonta et al., 1971; Wood et al., 1989a, c, d, 1990a; Wood and Rao, 1990); Rolyamines: spermine and spermidine (Rao et al., 1989a, c, d, 1990a; Wood and Rao, 1990); sonselective EAA antagonists: 6,7-dinitroquino FESTER THESTER THESTER THESTER THESTER THESTER THESTER THESTER THESTER TO THESTER THESTER TO THESTER THESTER TO THESTER THESTER TO THESTER THESTER THESTER TO THESTER THESTER THESTER CONDELLED THESTER THESTER THESTER CONDEL * Competitive NMDA antagonists: CPP and CGS 19755 (Lehmann et al., 1987; 1988a, b; Wood et al., 1987); noncompetitive NMDA
antagonists: MK-801, PCP, dexoxadrol (Lehmann et al., 1986; Lehmann and Wood, 1988; Wood et al., 19 6-nitro,7-cyanoquinoxaline-2,3-dione (Birch et al., 1988; Rao et al., 1990e; Wood and Rao, 1990); Polyamines: spermine and spermidine (Rao et al., 1990b, c; Wood and Rao, 1990); sigma receptor ligands: BMY 14802 and opipr Rao, 1990); nonselective EAA antagonists: 6,7-dinitroquinoxaline a
Rocod and Rao, 1990); Polyamines: spermine and spermidine (Rao
d opipramol (Rao et al., 1990a; Wood and Rao 1990); ifenprodil, mix
1988, 1999; Rao et al.,

6-nitro,7-cyanoquinoxaline-2,3-dione (Birch et al., 1988; Rao et al., 1990e; Wood, al., 1990b, c; Wood and Rao, 1990); sigma receptor ligands: BMY 14802 and operation of sigma/polyamine receptor ligands: ifenprodil and SL all, 1990b, c; wood and Rao, 1990); sigma receptor ligands: BMT 14802 a
sigma/polyamine receptor ligands: ifenprodil and SL 76002 (Carter et al.
ligands have been observed to antagonize increases in
cerebellar cGMP elicite Signa, polyanmic receptor ngands. henprodu and SD 70002 (Carter eligands have been observed to antagonize increases is cerebellar cGMP elicited by activation of NMDA an NMDA-associated glycine receptors (Rao et al., 1990a, ligands have been observed to antagonize increases in recerebellar cGMP elicited by activation of NMDA and for NMDA-associated glycine receptors (Rao et al., 1990a,f; Wood and Rao, 1990). BMY 14802, an apparently selective cerebellar cGMP elicited by activation of NMDA and
NMDA-associated glycine receptors (Rao et al., 1990a,f;
Wood and Rao, 1990). BMY 14802, an apparently selec-
tive sigma ligand, although slightly elevating basal cGMP
leve NMDA-associated glycine receptors (Rao et al., 1990a,f;
Wood and Rao, 1990). BMY 14802, an apparently selective sigma ligand, although slightly elevating basal cGMP T
levels, also selectively antagonizes NMDA-dependent inc Wood and Rao, 1990). BMY 14802, an apparently selective sigma ligand, although slightly elevating basal cGMP
levels, also selectively antagonizes NMDA-dependent increases in cGMP without altering cGMP responses to be
quisq tive sigma ligand, although slightly elevating basal cGM
levels, also selectively antagonizes NMDA-dependent increases in cGMP without altering cGMP responses to
quisqualate. This effect on NMDA receptor action
centrally m levels, also selectively antagonizes NMDA-dependent in-
creases in cGMP without altering cGMP responses to bellun
quisqualate. This effect on NMDA receptor action is erals
centrally mediated as evidenced by efficacy after creases in cGMP without altering cGMP responses to
quisqualate. This effect on NMDA receptor action is
centrally mediated as evidenced by efficacy after intra-
ventricular injections (Rao et al., 1990a); however, BMY
14802 quisqualate. This effect on NMDA receptor action is erals to the granule cell layer (Palay and Chan-Palay, centrally mediated as evidenced by efficacy after intra-
ventricular injections (Rao et al., 1990a); however, BMY t centrally mediated as evidenced by efficacy after intra-

d opipramol (Rao et al., 1990a; Wood and Rao 1
1988, 1999; Rao et al., 1989; Wood and Rao, 19
receptor modulation of NMDA recept
fore, requires more intense investigati et al., 1989; Wood and Rao, 1990). NT, not tests

ulation of NMDA receptor function, the

more intense investigation.
 IV. Climbing Fiber System

ng fiber pathway is a system with a disc

IV. Climbing Fiber System
The climbing fiber pathway is a system with a discrete origin in the inferior intense investigation.

IV. Climbing Fiber System

The climbing fiber pathway is a system with a discrete

origin in the inferior olive, which ascends into the cere-

bellum to innervate Purkinje cel IV. Climbing Fiber System
The climbing fiber pathway is a system with a discretion
origin in the inferior olive, which ascends into the cell
bellum to innervate Purkinje cells and also sends colla
erals to the granule cell IV. Climbing Fiber System
The climbing fiber pathway is a system with a discret
origin in the inferior olive, which ascends into the cere
bellum to innervate Purkinje cells and also sends collat
erals to the granule cell l I he climbing inter pathway is a system with a discrete origin in the inferior olive, which ascends into the cere-
bellum to innervate Purkinje cells and also sends collat-
erals to the granule cell layer (Palay and Chan-P bellum to innervate Purkinje cells and also sends collaterals to the granule cell layer (Palay and Chan-Palay, 1974; fig. 1). As discussed in section III.A, this appears to be an EAA-utilizing pathway.
The climbing fiber s llum to innervate Purkinje cells and also sends collat-
als to the granule cell layer (Palay and Chan-Palay,
74; fig. 1). As discussed in section III.A, this appears
be an EAA-utilizing pathway.
The climbing fiber system i erals to the granule cell layer (Palay and Chan-Palay, 1974; fig. 1). As discussed in section III.A, this appears to be an EAA-utilizing pathway.
The climbing fiber system is unique in that it can be selectively activated

1974; fig. 1). As discussed in section III.A, this appears to be an EAA-utilizing pathway.

The climbing fiber system is unique in that it can be selectively activated by the alkaloid, harmaline (Biggio et al., 1977c; Guid

16
1989c, 1990a), and is lesioned by the toxin, 3-acetyl
idine (Balaban, 1985; Guidotti et al., 1975). The act woo woo
1989c, 1990a), and is lesioned by the toxin, 3-acetylpyr-
idine (Balaban, 1985; Guidotti et al., 1975). The actions
of harmaline involve enhanced firing of the inferior olive wood 1989c, 1990a), and is lesioned by the toxin, 3-acetylpyr-
ightharmaline (Balaban, 1985; Guidotti et al., 1975). The actions sign
of harmaline involve enhanced firing of the inferior olive the
(LaMarre et al., 1971) wh 1989c, 1990a), and is lesioned by the toxin, 3-acetylpyr-

idine (Balaban, 1985; Guidotti et al., 1975). The actions si

of harmaline involve enhanced firing of the inferior olive

(LaMarre et al., 1971) which, in turn, le of harmaline involve enhanced firing of the inferior olive (LaMarre et al., 1971) which, in turn, leads to increased cerebellar cGMP levels (Biggio et al., 1977c; Guidotti et al., 1975; Wood et al., 1982, 1989c, 1990a). Th (LaMarre et al., 1971) which, in turn, leads to increased (LaMarre et al., 1971) which, in turn, leads to increased
cerebellar cGMP levels (Biggio et al., 1977c; Guidotti et
al., 1975; Wood et al., 1982, 1989c, 1990a). The actions
of harmaline involve increased cGMP in both the v cerebellar cGMP levels (Biggio et al., 1977c; Guidotti et 1977). S
al., 1975; Wood et al., 1982, 1989c, 1990a). The actions activity
of harmaline involve increased cGMP in both the vermis cGMP s
and hemispheres of the cere al., 1975; Wood et al., 1982, 1989c, 1990a). The actions action of harmaline involve increased cGMP in both the vermis cGl and hemispheres of the cerebellum (Guidotti et al., 1975; (Bi Rubin and Ferrendelli, 1977), with ap of harmaline involve increased cGMP in both the vermis
and hemispheres of the cerebellum (Guidotti et al., 1975;
Rubin and Ferrendelli, 1977), with approximately 80%
of the tissue change occurring in the molecular layer an and hemispheres of the cerebellum (Guidotti et al., 197
Rubin and Ferrendelli, 1977), with approximately 80
of the tissue change occurring in the molecular layer are
20% in the granular layer (Rubin and Ferrendelli, 1977
T Rubin and Ferrendelli, 1977), with approximately 80%
of the tissue change occurring in the molecular layer and
20% in the granular layer (Rubin and Ferrendelli, 1977).
The mechanism of action of harmaline remains unde-
fin of the tissue change occurring in the molecular layer and 20% in the granular layer (Rubin and Ferrendelli, 1977).
The mechanism of action of harmaline remains unde-
fined at this time, but it is not a result of its monoam 20% in the granular layer (Rubin and Ferrendelli, 1977). dott
The mechanism of action of harmaline remains unde-
fined at this time, but it is not a result of its monoamine ebel
oxidase-inhibiting properties because other The mechanism of action of harmaline remains unde-
fined at this time, but it is not a result of its monoamine
oxidase-inhibiting properties because other monoamine
oxidase inhibitors, such as pargyline and deprenyl, do
no fined at this time, but it is not a result of its monoamine
oxidase-inhibiting properties because other monoamine
oxidase inhibitors, such as pargyline and deprenyl, do
not alter cerebellar cGMP (Costa et al., 1974; Mao et oxidase inhibiting properties because other monoamine
oxidase inhibitors, such as pargyline and deprenyl, do
not alter cerebellar cGMP (Costa et al., 1974; Mao et al.
1974a). No benzodiazepine receptor involvement is evide oxidase inhibitors, such as pargyline and deprenyl, not alter cerebellar cGMP (Costa et al., 1974; Mao et a
1974a). No benzodiazepine receptor involvement is event, because the benzodiazepine receptor antagonis
flumazenil, not alter cerebellar cGMP (Costa et al., 1974; Mao et al.
1974a). No benzodiazepine receptor involvement is evident, because the benzodiazepine receptor antagonist
flumazenil, does not alter the effects of harmaline (Moh
l 1974a). No benzodiazepine receptor involvement is evident, because the benzodiazepine receptor antagonist, 1
flumazenil, does not alter the effects of harmaline (Mohler et al., 1981) and the actions of harmaline are inde-
 dent, because the benzodiazepine receptor antagonist,
flumazenil, does not alter the effects of harmaline (Mohler et al., 1981) and the actions of harmaline are inde-
pendent of motor activity changes as examined in d-
tub mazenil, does not alter the effects of harmaline (Moh-

identical studies (table 7) and the actions of harmaline are inde-

indent of motor activity changes as examined in d-

bocurarine-paralyzed animals (Lundberg et al.

ler et al., 1981) and the actions of harmaline are independent of motor activity changes as examined in d-
tubocurarine-paralyzed animals (Lundberg et al., 1979).
In a number of pharmacological studies (table 5), the
acti pendent of motor activity changes as examined in d-
tubocurarine-paralyzed animals (Lundberg et al., 1979).
In a number of pharmacological studies (table 5), the
actions of harmaline have been shown to be antagonized
by di tubocurarine-paralyzed animals (Lundberg et al., 19'
In a number of pharmacological studies (table 5),
actions of harmaline have been shown to be antagon
by diazepam and pentobarbital (Dodson and John:
1979), presumably vi In a number of pharmacological studies (table 5), the
actions of harmaline have been shown to be antagonized
by diazepam and pentobarbital (Dodson and Johnson,
1979), presumably via enhanced GABAergic transmis-
sion within actions of harmaline have been shown to be antagonized A. by diazepam and pentobarbital (Dodson and Johnson, 1979), presumably via enhanced GABAergic transmision within the cerebellum (section III. B.1); competitive cell by diazepam and pentobarbital (Dodson and Johnson,
1979), presumably via enhanced GABAergic transmistion
sion within the cerebellum (section III. B.1); competitive
NMDA receptor antagonists such as CPP (Lehmann and
wood, 1 1979), presumably via enhanced GABAergic transmis-
sion within the cerebellum (section III. B.1); competitive
NMDA receptor antagonists such as CPP (Lehmann and
Wood, 1988; Lehmann et al., 1987) and CGS 19755
(Lehmann et a sion within the cerebellum (section III. B.1); competit NMDA receptor antagonists such as CPP (Lehmann a Wood, 1988; Lehmann et al., 1987) and CGS 197 (Lehmann et al., 1988a,b); noncompetitive NMDA atagonists (Wood et al., NMDA receptor antagonists such as CPP (Lehmann and
Wood, 1988; Lehmann et al., 1987) and CGS 19755
(Lehmann et al., 1988a,b); noncompetitive NMDA an-
tagonists (Wood et al., 1987); antagonists of NMDA-
associated glycine r Wood, 1988; Lehmann et al., 1987) and CGS 19755
(Lehmann et al., 1988a,b); noncompetitive NMDA an-
tagonists (Wood et al., 1987); antagonists of NMDA-
associated glycine receptors (Wood et al., 1989d), pre-
sumably via inh (Lehmann et al., 1988a,b); noncompetitive NMDA antagonists (Wood et al., 1987); antagonists of NMDA-associated glycine receptors (Wood et al., 1989d), presumably via inhibition of NMDA-mediated transmission within the cere tagonists (Wood et al., 1987); antagonists of NMDA-
associated glycine receptors (Wood et al., 1989d), pre-
sumably via inhibition of NMDA-mediated transmission
within the cerebellum (section III.B.6); CCK fragments
is (W associated glycine receptors (Wood et al., 1989d), 1
sumably via inhibition of NMDA-mediated transmiss
within the cerebellum (section III.B.6); CCK fragme
(Wood et al., 1988b, 1989) and the CCK-like pepr
caerulein (Kageyam sumably via inhibition of NMDA-mediated transmission
within the cerebellum (section III.B.6); CCK fragments
(Wood et al., 1988b, 1989) and the CCK-like peptide
caerulein (Kageyama and Kurosawa, 1989), via extracer-
ebellar within the cerebellum (section III.B.6); CCK fragments ity

(Wood et al., 1988b, 1989) and the CCK-like peptide

caerulein (Kageyama and Kurosawa, 1989), via extracer-

shellar actions (section V.B.4); alcohol (Rappaport caerulein (Kageyama and Kurosawa, 1989), via extracer-

ebellar actions (section V.B.4); alcohol (Rappaport et al., $1.$ Dopaminergic modulators. A number of early studies

1984; section III.B.4); 3-acetylpyridine lesions caerulein (Kageyama and Kurosawa, 1989), via extrace
ebellar actions (section V.B.4); alcohol (Rappaport et a
1984; section III.B.4); 3-acetylpyridine lesions of tl
climbing fiber pathway (Biggio et al., 1977a; Guidotti
al ebellar actions (section V.B.4); alcohol (Rappaport et al., 1984; section III.B.4); 3-acetylpyridine lesions of the climbing fiber pathway (Biggio et al., 1977a; Guidotti et al., 1975; Mailman et al., 1979; section IV); si 1984; section III.B.4); 3-acetylpyridine lesions of the climbing fiber pathway (Biggio et al., 1977a; Guidotti et al., 1975; Mailman et al., 1979; section IV); sigma receptor ligands (Rao et al., 1990a; Wood and Rao, 1990; climbing fiber pa
al., 1975; Mailma
tor ligands (Rao
section III.B.6.j);
section III.B.g.i).
In contrast, th 1975; Mailman et al., 1979; section IV); sigma recep-

I ligands (Rao et al., 1990a; Wood and Rao, 1990; N

ction III.B.6.j); and polyamines (Rao et al., 1990c; re

ction III.B.g.i).

In contrast, the actions of harmaline

section III.B.6.j); and polyamines (Rao et al., 1990c; section III.B.g.i).
In contrast, the actions of harmaline are not altered
by manipulation of cerebellar mossy fiber systems (sec-
tion V), including the administration section III.B.6.j); and polyamines (Rao et al., 19
section III.B.g.i).
In contrast, the actions of harmaline are not alt
by manipulation of cerebellar mossy fiber systems (
tion V), including the administration of the anti section III.B.g.i).
In contrast, the actions of harmaline are not altered
by manipulation of cerebellar mossy fiber systems (sec-
tion V), including the administration of the anticholin-
ergic, atropine (Biggio et al., 197 In contrast, the actions of harmaline are not altered
by manipulation of cerebellar mossy fiber systems (sec-
tion V), including the administration of the anticholin-
ergic, atropine (Biggio et al., 1977c; Opmeer et al., 1 by manipulation of cerebellar mossy fiber systems (sec-
tion V), including the administration of the anticholin-
pergic, atropine (Biggio et al., 1977c; Opmeer et al., 1976);
the antidopaminergic, haloperidol (Biggio et al tion V), including the administration of the anticholinergic, atropine (Biggio et al., 1977c; Opmeer et al., 1976);
the antidopaminergic, haloperidol (Biggio et al., 1977c);
and by kainate lesions of projection cells in th ergic, atropi
the antidops
and by kains
which inner
al., 1978a).
The toxin e antidopaminergic, haloperidol (Biggio et al., 1977c);
d by kainate lesions of projection cells in the striatum
nich innervate pontocerebellar mossy fibers (Biggio et
, 1978a).
The toxin, 3-acetylpyridine, is an extremely

and by kainate lesions of projection cells in the striatum and
which innervate pontocerebellar mossy fibers (Biggio et wer
al., 1978a). fect
The toxin, 3-acetylpyridine, is an extremely useful tool apse
in the study of cer which innervate pontocerebellar mossy fibers (Biggio et were und., 1978a).

fects in the toxin, 3-acetylpyridine, is an extremely useful tool apses.

in the study of cerebellar function in that it induces an action

exten al., 1978a).
The toxin, 3-acetylpyridine, is an extremely useful too
in the study of cerebellar function in that it induces are
xtensive lesion of the cerebellar climbing fiber system
(reviewed by Balaban, 1985). Several rie with, 3-acetylpyridine, is an extremely useful to
in the study of cerebellar function in that it induces a
extensive lesion of the cerebellar climbing fiber syste
(reviewed by Balaban, 1985). Several aspects of the ne

1989c, 1990a), and is lesioned by the toxin, 3-acetylpyr-
igated and indicate that cerebellar aspartate levels are
idine (Balaban, 1985; Guidotti et al., 1975). The actions significantly decreased after the lesion occurs, w00D
r- tigated and indicate that cerebellar aspartate levels are
ns significantly decreased after the lesion occurs, suggesting b
tigated and indicate that cerebellar aspartate levels are
significantly decreased after the lesion occurs, suggesting
that the climbing fiber pathway utilizes an EAA as its
neurotransmitter (McBride et al., 1978; Nadi et igated and indicate that cerebellar aspartate levels are significantly decreased after the lesion occurs, suggesting that the climbing fiber pathway utilizes an EAA as its neurotransmitter (McBride et al., 1978; Nadi et al tigated and indicate that cerebellar aspartate levels are
significantly decreased after the lesion occurs, suggesting
that the climbing fiber pathway utilizes an EAA as its
neurotransmitter (McBride et al., 1978; Nadi et a significantly decreased after the lesion occurs, suggesting
that the climbing fiber pathway utilizes an EAA as its
neurotransmitter (McBride et al., 1978; Nadi et al.,
1977). Such lesions remove the incoming climbing fiber that the climbing fiber pathway utilizes an EAA as its
neurotransmitter (McBride et al., 1978; Nadi et al.,
1977). Such lesions remove the incoming climbing fiber
activity which decreases the basal tone of the cerebellar
c neurotransmitter (McBride et al., 1978; Nadi et al.
1977). Such lesions remove the incoming climbing fibe
activity which decreases the basal tone of the cerebella
cGMP system(s) by 20 (Mailman et al., 1979) to 40?
(Biggio 1977). Such lesions remove the incoming chinomy interactivity which decreases the basal tone of the cerebellar cGMP system(s) by 20 (Mailman et al., 1979) to 40% (Biggio et al., 1977c,d; Guidotti et al., 1975). Additional (Biggio et al., 1977c,d; Guidotti et al., 1975). Additionally, these lesions selectively block the actions of harmaline on cerebellar cGMP levels (Biggio et al., 1977c,d; Guidotti et al., 1975; Mailman et al., 1979) withou cGMP system(s) by 20 (Mailman et al., 1979) to 40%
(Biggio et al., 1977c,d; Guidotti et al., 1975). Additionally,
these lesions selectively block the actions of harmaline
on cerebellar cGMP levels (Biggio et al., 1977c,d; (Biggio et al., 1977c,d; Guidotti et al., 1975). Additions
these lesions selectively block the actions of harmal
on cerebellar cGMP levels (Biggio et al., 1977c,d; C
dotti et al., 1975; Mailman et al., 1979) without alter
 these lesions selectively block the actions of harmaline
on cerebellar cGMP levels (Biggio et al., 1977c,d; Gui-
dotti et al., 1975; Mailman et al., 1979) without altering
the actions of modulators of climbing fibers or in on cerebellar cGMP levels (Biggio et al., 1977c,d; Guidotti et al., 1975; Mailman et al., 1979) without altering
the actions of modulators of climbing fibers or intracer-
ebellar pathways. The pharmacological agents not af dotti et al., 1975; Mailman et al., 1979) without altering
the actions of modulators of climbing fibers or intracer-
ebellar pathways. The pharmacological agents not af-
fected by 3-acetylpyridine lesions are discussed in the actions of modulators of childing fibers of intracer-
ebellar pathways. The pharmacological agents not af-
fected by 3-acetylpyridine lesions are discussed in more
detail throughout this review, but briefly summarized
 fected by 3-acetylpyridine lesions are discussed in mordetail throughout this review, but briefly summarized
they include (table 5) apomorphine (Biggio et al., 1977c)
TRH (Mailman et al., 1979), isoniazid (Biggio et al.
19 detail throughout this review, but briefly summarized
they include (table 5) apomorphine (Biggio et al., 1977c),
TRH (Mailman et al., 1979), isoniazid (Biggio et al.,
1977c), haloperidol (Biggio et al., 1977d), diazepam (B TRH (Mailman et al., 1979), i
1977c), haloperidol (Biggio et al.,
gio et al., 1977d), muscimol (Big
morphine (Biggio et al., 1977d). ridol (Biggio et al., 1977d), dia
d), muscimol (Biggio et al., 1
gio et al., 1977d).
V. Mossy Fiber Systems morphine (Biggio et al., 1977d).
 V. Mossy Fiber Systems
 A. Anatomy/Neurochemistry

V. Mossy Fiber Systems
Anatomy/Neurochemistry
The mossy fiber pathways are afferent innervations
at synapse almost exclusively on cerebellar granule V. Mossy Fiber Systems
A. Anatomy/Neurochemistry
The mossy fiber pathways are afferent innervations
that synapse almost exclusively on cerebellar granule
cells. These inputs consist of the spinocerebellar, pon-A. Anatomy/Neurochemistry
The mossy fiber pathways are afferent innervation
that synapse almost exclusively on cerebellar granu
cells. These inputs consist of the spinocerebellar, po
tocerebellar, and vestibulocerebellar s The mossy fiber pathways are afferent innervations
that synapse almost exclusively on cerebellar granule
cells. These inputs consist of the spinocerebellar, pon-
tocerebellar, and vestibulocerebellar systems (Allen and
Tsu The mossy niser pathways are allerent innervations
that synapse almost exclusively on cerebellar granule
cells. These inputs consist of the spinocerebellar, pon-
tocerebellar, and vestibulocerebellar systems (Allen and
Tsu that synapse annost exclusively on cerebenar granue
cells. These inputs consist of the spinocerebellar, pon-
tocerebellar, and vestibulocerebellar systems (Allen and
Tsukahara, 1974); unfortunately, our knowledge base of
t tocerebellar, and vestibulocerebellar systems (Allen and Tsukahara, 1974); unfortunately, our knowledge base of the neurochemistry of these pathways is nonexistent.
However, we do have some data regarding the chemical make Tsukahara, 1974); unfortunately, our knowledge base the neurochemistry of these pathways is nonexisten
However, we do have some data regarding the chemics
makeup and pharmacology of a striatal system whicl
via a multisynap the neurochemistry of these pathways is honexist.
However, we do have some data regarding the chem
makeup and pharmacology of a striatal system wh
via a multisynaptic pathway (fig. 4), modulates the ac
ity of pontocerebell makeup and pharmacology
 B. Pharmacology
 B. Pharmacology
 B. Dopaminersic via a multisynaptic pathway (fig. 4), modulates the activity of pontocerebellar neurons (Biggio et al., 1978a).
 B. Pharmacology
 1. Dopaminergic modulators. A number of early studies

demonstrated that the dopamine ag

ity of pontocerebellar neurons (Biggio et al., 1978a).

B. Pharmacology

1. Dopaminergic modulators. A number of early studies

demonstrated that the dopamine agonist, apomorphine

(Biggio et al., 1977c; Breese et al., 197 B. Pharmacology
1. Dopaminergic modulators. A number of early studies
demonstrated that the dopamine agonist, apomorphine
(Biggio et al., 1977c; Breese et al., 1978; 1979a; Burkard
et al., 1976; Gumulka et al., 1976; Mohle **Etheral all alterations:** A number of early studies

demonstrated that the dopamine agonist, apomorphine

(Biggio et al., 1977c; Breese et al., 1978; 1979a; Burkard

et al., 1976; Gumulka et al., 1976; Mohler et al., 1981 1. Dopaminergic modulators. A number of early studies
demonstrated that the dopamine agonist, apomorphine
(Biggio et al., 1977c; Breese et al., 1978; 1979a; Burkard
et al., 1976; Gumulka et al., 1976; Mohler et al., 1981;
 demonstrated that the dopamine agonist, apomorph
(Biggio et al., 1977c; Breese et al., 1978; 1979a; Burk:
et al., 1976; Gumulka et al., 1976; Mohler et al., 19
Narumi et al., 1983; Puri et al., 1978), the dopam
releasers a (Biggio et al., 1977c; Breese et al., 1978; 1979a; Burkard
et al., 1976; Gumulka et al., 1976; Mohler et al., 1981;
Narumi et al., 1983; Puri et al., 1978), the dopamine
releasers amphetamine, methamphetamine and methyl-
p et al., 1976; Gumuka et al., 1976; Monier et al., 1981;
Narumi et al., 1983; Puri et al., 1978), the dopamine
releasers amphetamine, methamphetamine and methyl-
phenidate (Breese et al., 1978, 1979a; Gumulka et al.,
1976; releasers amphetamine, methamphetamine and methyl-
phenidate (Breese et al., 1978, 1979a; Gumulka et al.,
1976; Narumi et al., 1983; Wood et al., 1988b), and the
dopamine precursor, L-DOPA, in combination with a
peripheral phenidate (Breese et al., 1978, 1979a; Gumulka et al., 1976; Narumi et al., 1983; Wood et al., 1988b), and the dopamine precursor, L-DOPA, in combination with a peripheral decarboxylase inhibitor (Gumulka et al., 1976), al 1976; Narumi et al., 1983; Wood et al., 1988b), and the dopamine precursor, L-DOPA, in combination with a peripheral decarboxylase inhibitor (Gumulka et al., 1976), all increased cerebellar cGMP levels. Studies in which in dopamine precursor, L-DOPA, in combination with a
peripheral decarboxylase inhibitor (Gumulka et al.,
1976), all increased cerebellar cGMP levels. Studies in
which intrastriatal injections of apomorphine (Biggio
and Guidot peripheral decarboxylase inhibitor (Gumulka et al., 1976), all increased cerebellar cGMP levels. Studies in which intrastriatal injections of apomorphine (Biggio and Guidotti, 1976) and dopamine (Lautie et al., 1981) were 1976), all increased cerebellar cGMP levels. Studies in which intrastriatal injections of apomorphine (Biggio and Guidotti, 1976) and dopamine (Lautie et al., 1981) were used clearly indicated that these dopaminergic effec which intrastriatal injections of apomorphine (Biggio and Guidotti, 1976) and dopamine (Lautie et al., 1981)
were used clearly indicated that these dopaminergic ef-
fects involved striatal dopaminergic receptors and syn-
a and Guidotti, 1976) and dopamine (Lautie et al., 1981)
were used clearly indicated that these dopaminergic ef-
fects involved striatal dopaminergic receptors and syn-
apses. The role of central dopamine receptors in these
 were used clearly indicated that these dopaminergic effects involved striatal dopaminergic receptors and synapses. The role of central dopamine receptors in these actions was also supported by antagonism of the actions of fects involved striatal dopaminergic receptors and syn-
apses. The role of central dopamine receptors in these
actions was also supported by antagonism of the actions
of apomorphine by a number of brain bioavailable do-
pa apses. The role of central dopamine receptors in these actions was also supported by antagonism of the actions of apomorphine by a number of brain bioavailable dopamine antagonists but not by the peripheral dopamine recept

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

input(s) to the cerebellum, which are modulated by striatal dopami-

nergic synapses. DA, dopamine; ACh, acetylcholine.
1979a). The importance of the striatum in these drug FIG. 4. Proposed polysynaptic circuitry included in the mossy fiber
input(s) to the cerebellum, which are modulated by striatal dopami-
nergic synapses. DA, dopamine; ACh, acetylcholine.
1979a). The importance of the stri mput(s) to the cerebentum, which are modulated by striature dopaminer
nergic synapses. DA, dopamine; ACh, acetylcholine.
1979a). The importance of the striatum in these drug
effects was further validated using kainate les and the symplect. Err, explanate, rich, acceptance.

1979a). The importance of the striatum in these drug all

effects was further validated using kainate lesions of the

striatum (Biggio et al., 1978a). In this case, the 1979a). The importance of the striatum in these drug aleffects was further validated using kainate lesions of the striatum (Biggio et al., 1978a). In this case, the effects of apomorphine in increasing cerebellar cGMP wer effects was further validated using kainate lesions of the striatum (Biggio et al., 1978a). In this case, the effects of appomorphine in increasing cerebellar cGMP were blocked by such striatal lesions, whereas the effect striatum (Biggio et al., 1978a). In this case, the effects of
apomorphine in increasing cerebellar cGMP were
blocked by such striatal lesions, whereas the effects of
harmaline and isoniazid were unaltered. In addition, it apomorphine in increasing cerebellar cGMP were (left blocked by such striatal lesions, whereas the effects of striarmaline and isoniazid were unaltered. In addition, it is noteworthy that the kainate lesions of the striat blocked by such striatal lesions, whereas the effects of
harmaline and isoniazid were unaltered. In addition, it
is noteworthy that the kainate lesions of the striatum
resulted in time-dependent decreases (6 h = 85% of
co harmaline and isoniazid were unaltered. In addition, is
is noteworthy that the kainate lesions of the striatun
resulted in time-dependent decreases (6 h = 85% o
control, 12 h = 67%, 24 h = 31%, 72 h = 26%) in th
basal lev is noteworthy that the kainate lesions of the striature resulted in time-dependent decreases $(6 h = 85\% \text{ o control}, 12 h = 67\%, 24 h = 31\%, 72 h = 26\%)$ in the basal levels of cerebellar CGMP with no change in cere bellar guanylate c sulted in time-dependent decreases $(6 h = 85\%$ of introl, $12 h = 67\%$, $24 h = 31\%$, $72 h = 26\%$) in the sal levels of cerebellar cGMP with no change in cere-
llar guanylate cyclase activity (Biggio et al., 1978a).
These d control, 12 h = 67%, 24 h = 31%, 72 h = 26%) in the
basal levels of cerebellar cGMP with no change in cere-
bellar guanylate cyclase activity (Biggio et al., 1978a).
These data indicate that tonic mossy fiber input to the

basal levels of cerebellar cGMP with no change in cerebellar guanylate cyclase activity (Biggio et al., 1978a).
These data indicate that tonic mossy fiber input to the cerebellum is a major contributor to the basal levels bellar guanylate cyclase activity (Biggio et al., 1978a).

These data indicate that tonic mossy fiber input to the

cerebellum is a major contributor to the basal levels of

cGMP measured in this brain area. These data hav cerebellum is a major contributor to the basal levels of cGMP measured in this brain area. These data have, therefore, led to the speculation of the existence of a multisynaptic pathway between the striatum and the pontoce CGMP measured in this brain area. I nese data have
therefore, led to the speculation of the existence of
multisynaptic pathway between the striatum and the
pontocerebellar mossy fiber system (fig. 4; Biggio et a
1978a). Th multisynaptic pathway between the striatum and the pontocerebellar mossy fiber system (fig. 4; Biggio et al., 1978a). The kainate lesions support a striatal cell population with efferent fibers reaching the pontine regions multisynaptic pathway between the striatum and the pontocerebellar mossy fiber system (fig. 4; Biggio et al., 1978a). The kainate lesions support a striatal cell population with efferent fibers reaching the pontine regions pontocerebellar mossy liber system (iig. 4; Eiggio et al., 1978a). The kainate lesions support a striatal cell population with efferent fibers reaching the pontine regions; Phowever, the number of synapses in such an outpu lation with efferent fibers reaching the pontine regions; ^{ph}
however, the number of synapses in such an output
system has not been defined. The enhanced cerebellar st
GCMP levels measured after activation of this pathway however, the number of synapses in such an output last approximate system has not been defined. The enhanced cerebellar stimulation stimulation, because the increases elicited in rats matcher paralyzed with d-tubocurarine system has not been defined. The enhanced cerebells $cGMP$ levels measured after activation of this pathway with apomorphine appear to be partially dependent upomotor stimulation, because the increases elicited in raparaly

cGMP IN THE CEREBELLUM 17
lated were smaller than those occurring in free-moving
rats (Breese et al., 1979a; Lundberg et al., 1979). How-EREBELLUM
lated were smaller than those occurring in free-movint
rats (Breese et al., 1979a; Lundberg et al., 1979). How
ever, there was no direct correlation between locomote **exemption**

lated were smaller than those occurring in free-moving

rats (Breese et al., 1979a; Lundberg et al., 1979). How-

ever, there was no direct correlation between locomotor

activity and cerebellar cGMP (Breese e ed were smaller than those occurring in free-moving
ts (Breese et al., 1979a; Lundberg et al., 1979). How-
er, there was no direct correlation between locomotor
tivity and cerebellar cGMP (Breese et al., 1979a).
In contras

FIG. 4. Proposed polysynaptic circuitry included in the mossy fiber

FIG. 4. Proposed polysynaptic circuitry included in the mossy fiber

FIG. 4. Proposed polysynaptic circuitry included in the mossy fiber

FIG. 4. Propose propyl-2H[l]benzopyrano[3,4-b]pyridin-9-ol (Iyengar et
1979a). The importance of the striatum in these drug al., 1989). In these studies, all effective postsynaptic
effects was further validated using kainate lesions of th rats (Breese et al., 1979a; Lundberg et al., 1979). How-
ever, there was no direct correlation between locomotor
activity and cerebellar cGMP (Breese et al., 1979a).
In contrast to the actions of the dopamine agonists
and stereospecifically decrease basal cGMP levels (Biggio and Guidotti, 1977; Biggio et al., 1977c; Breese et al., 1979a). In contrast to the actions of the dopamine agonists
and releasers, dopamine antagonists have been shown to
stereospecifically decrease basal cGMP levels (Biggio
and Guidotti, 1977; Biggio et al., 1977c; Breese et al.,
1978 stereospecifically decrease basal cGMP levels (Biggio and Guidotti, 1977; Biggio et al., 1977c; Breese et al., 1978, 1979a; Burkard et al., 1976; Corda et al., 1979). These decreases in cerebellar cGMP are also stereospeci These decreases in cerebellar cGMP are also stereospecifically reproduced by intrastriatal, but not intracere-
bellar, injections of dopamine antagonists (Biggio et al., 1977d; Biggio and Guidoti, 1977; Breese et al., 1979a; 1978, 1979a; Burkard et al., 1976; Corda et al., 1979).
These decreases in cerebellar cGMP are also stereospecifically reproduced by intrastriatal, but not intracere-
bellar, injections of dopamine antagonists (Biggio et a These decreases in cerebellar cGMP are also stereospecifically reproduced by intrastriatal, but not intracere-
bellar, injections of dopamine antagonists (Biggio et al., 1977d; Biggio and Guidoti, 1977; Breese et al., 1979 cifically reproduced by intrastriatal, but not intracere-
bellar, injections of dopamine antagonists (Biggio et al.,
1977d; Biggio and Guidoti, 1977; Breese et al., 1979a;
Corda et al., 1979). The actions of both dopamine bellar, injections of dopamine antagonists (Biggio et al., 1977d; Biggio and Guidoti, 1977; Breese et al., 1979a; Corda et al., 1979). The actions of both dopamine agonists and antagonists were not altered in animals with Forta, Eigele and Guidell, 1911, Ereese of all, 1916,
Corda et al., 1979). The actions of both dopamine ago-
nists and antagonists were not altered in animals with
lesions produced by 3-acetylpyridine, indicating a lack of Corda et al., 1979). The actions of both dopamine agonists and antagonists were not altered in animals with lesions produced by 3-acetylpyridine, indicating a lack of involvement of climbing fibers in the observed drug eff ness and analyons as were not anoted in annihas when
lesions produced by 3-acetylpyridine, indicating a lack of
involvement of climbing fibers in the observed drug
effects (Biggio et al., 1977d). Studies (Biggio et al., 19 the producted by a decly-pyridine, indicating a fact of
involvement of climbing fibers in the observed drug
effects (Biggio et al., 1977d). Studies (Biggio et al., 1978c)
of chronic neuroleptic treatment (haloperidol, 0.5 mvolvement of emmong modes in the observed diverted effects (Biggio et al., 1978). Studies (Biggio et al., 1978) of chronic neuroleptic treatment (haloperidol, 0.5 mg/
twice daily for 20 days) have shown tolerance to the d ented (Eight ovality, 1977a), Solands (Eight ovality, 1976b)
of chronic neuroleptic treatment (haloperidol, 0.5 mg/g,
twice daily for 20 days) have shown tolerance to the
decreases in cGMP levels induced by haloperidol tre twice daily for 20 days) have shown tolerance to the
decreases in cGMP levels induced by haloperidol treat-
ment. Additionally, these tolerant rats were shown to
express enhanced sensitivity to apomorphine-induced
cGMP inc decreases in cGMP levels induced by haloperidol trement. Additionally, these tolerant rats were shown express enhanced sensitivity to apomorphine-induce GMP increases, suggesting that cGMP is a sensitividex of the level of ment. Additionally, these tolerant rats were shown to
express enhanced sensitivity to apomorphine-induced
cGMP increases, suggesting that cGMP is a sensitive
index of the level of striatal dopamine receptor activa-
tion (B express emianced sensurity to apomorphine mateca cGMP increases, suggesting that cGMP is a sensitive index of the level of striatal dopamine receptor activation (Biggio et al., 1978b). This contention has been supported in index of the level of striatal dopamine receptor activaition (Biggio et al., 1978b). This contention has been appointed in studies of the presynaptic to postsynap dose-response relationships for the dopamine agon appomorphine, and the more selective dopamine autore-
ceptor ago tion (Biggio et al., 1978b). This contention has
supported in studies of the presynaptic to postsyn
dose-response relationships for the dopamine ag
apomorphine, and the more selective dopamine at
ceptor agonist, (±)-*trans* dose-response relationships for the dopamine agonist,
apomorphine, and the more selective dopamine autore-
ceptor agonist, (\pm) -*trans*-1,3,4,4a,10b-hexahydro-4-
propyl-2H[l]benzopyrano[3,4-b]pyridin-9-ol (Iyengar et
al., absortationships for the dopamine agonst,
apomorphine, and the more selective dopamine autore-
ceptor agonist, (\pm) -trans-1,3,4,4a,10b-hexahydro-4-
propyl-2H[l]benzopyrano[3,4-b]pyridin-9-ol (Iyengar et
al., 1989). In the al., 1989). In these studies, all effective postsynaptic ceptor agonist, (\pm) -trans-1,3,4,4a,10b-hexahydro-4-
propyl-2H[l]benzopyrano[3,4-b]pyridin-9-ol (Iyengar et
al., 1989). In these studies, all effective postsynaptic
dopamine receptor doses, as assessed by changes in stri (Iyengar et al., 1989). In these studies, all effective postsynaptic dopamine receptor doses, as assessed by changes in striated acetylcholine levels, also increased cerebellar cGMP (Iyengar et al., 1989), suggesting modul striato-pontocerebellar mossy fiber pathway.
In acctylcholine levels, also increased cereb
(Iyengar et al., 1989), suggesting modula
striato-pontocerebellar mossy fiber pathway.
From these studies, it has been suggested From these studies, as assessed by changes in striated acctylcholine levels, also increased cerebellar cGMP vengar et al., 1989), suggesting modulation of the riato-pontocerebellar mossy fiber pathway.
From these studies,

cerebellum is a major contributor to the basal levels of
cGMP measured in this brain area. These data have,
therefore, led to the speculation of the existence of a
multisynaptic pathway between the striatum and the
pontoc (Iyengar et al., 1989), suggesting modulation of the striato-pontocerebellar mossy fiber pathway.
From these studies, it has been suggested that there is a tonic net excitatory effect on pontocerebellar mossy fibers via st fiveligat et al., 1999), suggessing modulation of the
striato-pontocerebellar mossy fiber pathway.
From these studies, it has been suggested that there is
a tonic net excitatory effect on pontocerebellar mossy
fibers via s striato-pontocerebellar mossy fiber pathway.
From these studies, it has been suggested that there is
a tonic net excitatory effect on pontocerebellar mossy
fibers via striatal output neurons which can be further
potentiate From these studies, it has been suggested that there
a tonic net excitatory effect on pontocerebellar mos
fibers via striatal output neurons which can be furth
potentiated by dopamine agonists or releasers. One pie
of dat a tonic net excitatory effect on pontocerebellar most
fibers via striatal output neurons which can be furth
potentiated by dopamine agonists or releasers. One pie
of data inconsistent with this hypothesis is that inhil
ti potentiated by dopamine agonists or releasers. One piece of data inconsistent with this hypothesis is that inhibition of dopamine synthesis with α -methyl-paratyrosine does not alter basal cGMP levels (Narumi et al., 1983). does not alter basal cGMP levels (Narumi et al., 1983
Although these negative data clearly require reevaluation, a similar finding has been reported for 6-hydroxy
dopamine treatments, which do not alter basal cGM
levels (Atthough these hegative data clearly require reevalu-
ation, a similar finding has been reported for 6-hydroxy-
dopamine treatments, which do not alter basal CGMP
levels (Mao et al., 1974a). The α -methyl-paratyrosine
t depannie creatineires, which do not after basafr contributed
levels (Mao et al., 1974a). The α -methyl-paratyrosine
treatments, however, did antagonize the actions of am-
phetamine in increasing cerebellar CGMP (Narumi striatal dopamine content was not reported; therefore, a
phetamine in increasing cerebellar cGMP (Narumi et al.,
1983). In both of these studies, the measurement of
striatal dopamine content was not reported; therefore, a
 phetalline in increasing cerebellar colorical (Natural et al., 1983). In both of these studies, the measurement of striatal dopamine content was not reported; therefore, a small functional dopamine pool may have been prese striated topenine content was not reported, therefore, a
small functional dopamine pool may have been present
and capable of maintaining basal dopaminergic trans-
mission and thus not altering cerebellar cGMP. However,
res

18
norepinephrine, does decrease cerebellar cGMP (Rubin ox
and Ferrendelli, 1977). 18
norepinephrine, does de
and Ferrendelli, 1977).
Another possible expl

Frepinephrine, does decrease cerebellar cGMP (Ruld Ferrendelli, 1977).
Another possible explanation for some of the discret data, with regard to the tonicity of this dopamin norepinephrine, does decrease cerebellar cGMP (Ru
and Ferrendelli, 1977).
Another possible explanation for some of the disc
ant data, with regard to the tonicity of this dopam
modulated output from the striatum, is the obs morepinephrine, does decrease cerebellar cGMP (Rubin
and Ferrendelli, 1977).
Another possible explanation for some of the discrep-
ant data, with regard to the tonicity of this dopamine-
modulated output from the striatum, emplement and Ferrendelli, 1977).

Another possible explanation for some of the discrep-

ant data, with regard to the tonicity of this dopamine-

modulated output from the striatum, is the observation

that, in rats habit Another possible explanation for some of the discrepant data, with regard to the tonicity of this dopamine-
modulated output from the striatum, is the observation
that, in rats habituated to handling, basal cGMP levels
are ant data, whil regard to the tomchty of this dopamine-
modulated output from the striatum, is the observation p
that, in rats habituated to handling, basal CGMP levels n
are lower than in naive rats and that dopamine antag that, in rats habituated to handling, basal cGMP levels nare lower than in naive rats and that dopamine antago-
nists cannot further decrease the cGMP levels in these canimals (Corda et al., 1980). These data indicate that are lower than in naive rats and that dopamine antago-
nists cannot further decrease the cGMP levels in these
enimals (Corda et al., 1980). These data indicate that
the decreases in basal cerebellar cGMP levels measured
af mists cannot further decrease the cGMP levels in these
animals (Corda et al., 1980). These data indicate that
the decreases in basal cerebellar cGMP levels measured
after dopamine antagonist treatments may well depend
upon animals (Corda et al., 1980). These data indicate that muss
the decreases in basal cerebellar cGMP levels measured T
after dopamine antagonist treatments may well depend and
upon the degree of stress elevation of basal cGM the decreases in basal cerebellar cGMP levels measured
after dopamine antagonist treatments may well depend
upon the degree of stress elevation of basal cGMP levels,
a notion consistent with dopaminergic involvement in
str after dopamine antagonist trupon the degree of stress elev.
a notion consistent with dop
stress-induced cGMP increa
mulka, 1977; section II.E.2).
The actions of apomorphir on the degree of stress elevation of basal cGMP levels, in c
notion consistent with dopaminergic involvement in 3.
ress-induced cGMP increases (Dinnendahl and Gu-
ulka, 1977; section II.E.2).
The actions of apomorphine hav

a notion consistent with dopaminergic involvement stress-induced cGMP increases (Dinnendahl and mulka, 1977; section II.E.2).
The actions of apomorphine have also been show be blocked by pretreatment with the central antic stress-induced cGMP increases (Dinnendahl and Gumulka, 1977; section II.E.2).

The actions of apomorphine have also been shown to

be blocked by pretreatment with the central anticholin-

ergics, trihxyphenidyl (Biggio et mulka, 1977; section II.E.2). dy
The actions of apomorphine have also been shown to
be blocked by pretreatment with the central anticholin-
cergics, trihxyphenidyl (Biggio et al., 1977c) and hyoscine
National (Burkard et a Ine actions of apomorphine have also been shown to
be blocked by pretreatment with the central anticholin-
ergics, trihxyphenidyl (Biggio et al., 1977c) and hyoscine
(Burkard et al., 1976), but not by methylatropine, which ergics, trihxyphenidyl (Biggio et al., 1977c) and hyosci
(Burkard et al., 1976), but not by methylatropine, whis
is not brain bioavailable, indicating a central action
the anticholinergics in blocking apomorphine (Burka
et (Burkard et al., 1976), but not by methylatropine, which rise not brain bioavailable, indicating a central action of perfection the anticholinergics in blocking apomorphine (Burkard 7 et al., 1976). These data indicate tha is not brain bioavailable, indicating a central action of the anticholinergics in blocking apomorphine (Burkaret al., 1976). These data indicate that there is a cholinergic synapse downstream to the dopaminergic synaps in the anticholinergics in blocking apomorphine (Burkard
et al., 1976). These data indicate that there is a cholin-
ergic synapse downstream to the dopaminergic synapse
in this multisynaptic pathway to the pontocerebellar
mos ergic synapse downstream to the dopaminergic synapse of a
in this multisynaptic pathway to the pontocerebellar have
mossy fiber system. The exact location of the cholinergic sys
synapse involved is currently unknown but i ergic synapse downstream to the dopaminergic synapse
in this multisynaptic pathway to the pontocerebellar
mossy fiber system. The exact location of the cholinergic
synapse involved is currently unknown but is unlikely to
b

mossy fiber system. The exact location of the cholinergic
synapse involved is currently unknown but is unlikely to
be within the striatum (Burkard et al., 1976).
2. *Cholinergic modulators*. The muscarinic agonists
oxotrem synapse involved is currently unknown but is unlikely to
be within the striatum (Burkard et al., 1976).
2. Cholinergic modulators. The muscarinic agonists
oxotremorine, pilocarpine, and arecoline (Dinnendahl
and Stock, 197 be within the striatum (Burkard et al., 1976).

2. Cholinergic modulators. The muscarinic agonists

oxotremorine, pilocarpine, and arecoline (Dinnendahl

and Stock, 1975; Dodson and Johnson, 1979; Ferrendelli

et al., 1970 2. Cholinergic modulators. The muscarinic agonists noxotremorine, pilocarpine, and arecoline (Dinnendahl A
and Stock, 1975; Dodson and Johnson, 1979; Ferrendelli ret al., 1970; Gumulka et al., 1976; Opmeer et al., 1976; f
 oxotremorine, pilocarpine, and arecoline (Dinnendal
and Stock, 1975; Dodson and Johnson, 1979; Ferrende
et al., 1970; Gumulka et al., 1976; Opmeer et al., 197
Puri et al., 1978; Rubin and Ferrendelli, 1977; Wood
al., 1982) and Stock, 1970; Douson and Johnson, 1979, Ferrendent
et al., 1970; Gumulka et al., 1976; Opmeer et al., 1976; fi
Puri et al., 1978; Rubin and Ferrendelli, 1977; Wood et
al., 1982) as well as the nicotinic agonist, nicotin et al., 1970; Gumulka et al., 1976; Opmeer et al., 19
Puri et al., 1978; Rubin and Ferrendelli, 1977; Wood
al., 1982) as well as the nicotinic agonist, nicotine (D
son and Johnson, 1979), all dose dependently and t
depende Puri et al., 1978; Rubin and Ferrendelli, 1977; Wood et al., 1982) as well as the nicotinic agonist, nicotine (Dodson and Johnson, 1979), all dose dependently and time dependently increase cerebellar cGMP levels. Interesti al., 1982) as well as the nicotinic agonist, nicotine (Dowson and Johnson, 1979), all dose dependently and tin
dependently increase cerebellar CGMP levels. Interes
ingly, the increases in CGMP elicited by oxotremorin
were son and Johnson, 1979), all dose dependently and time
dependently increase cerebellar cGMP levels. Interest-
ingly, the increases in cGMP elicited by oxotremorine
were only monitored in the vermis but not the hemi-
spheres dependently increase cerebellar cGMP levels. Interest-
ingly, the increases in cGMP elicited by oxotremorine lar
were only monitored in the vermis but not the hemi-
effects can be spheres of the cerebellum (Rubin and Ferre ingly, the increases in cGMP elicited by oxotremorine lumes were only monitored in the vermis but not the hemispheres of the cerebellum (Rubin and Ferrendelli, 1977). (These data suggest that more topographic effects can b were only monitored in the vermis but not the hem
spheres of the cerebellum (Rubin and Ferrendelli, 1977
These data suggest that more topographic effects can h
observed with cerebellar cGMP changes after mossy fibe
activat spheres of the cerebellum (These data suggest that m
observed with cerebellar cC
activation than is evident
cerebellar circuit changes.
In contrast, cholinesters nese data suggest that more topographic effects can be
served with cerebellar cGMP changes after mossy fibe
tivation than is evident with climbing fiber or intra
rebellar circuit changes.
In contrast, cholinesterase inhibi

observed with cerebellar cGMP changes after mossy fiber
activation than is evident with climbing fiber or intra-
cerebellar circuit changes.
In contrast, cholinesterase inhibitors exert more com-
plex effects, in that earl activation than is evident with climbing fiber or interrebellar circuit changes.
In contrast, cholinesterase inhibitors exert more coplex effects, in that early (10 min) increases in cerebe
cGMP are followed by decreases a cerebellar circuit changes. the incontrast, cholinesterase inhibitors exert more com-
plex effects, in that early (10 min) increases in cerebellar E
cGMP are followed by decreases at 30–60 min (Dinnen-
dahl and Stock, 1975 In contrast, cholinesterase inhibitors exert more com-
plex effects, in that early (10 min) increases in cerebellar
cGMP are followed by decreases at 30–60 min (Dinnen-
dahl and Stock, 1975). These effects may well involve cGMP are followed by decreases at 30–60 min (Dinnen-
dahl and Stock, 1975). These effects may well involve
later multisynaptic effects of cholinesterase inhibition
but require more in-depth studies.
Antimuscarinics do not

dahl and Stock, 1975). These effects may well involve
later multisynaptic effects of cholinesterase inhibition
but require more in-depth studies. m
Antimuscarinics do not alter cerebellar basal cGMP
mevels (Biggio et al., later multisynaptic effects of cholinesterase inhibition
but require more in-depth studies.
Antimuscarinics do not alter cerebellar basal cGMP
levels (Biggio et al., 1977c,d; Burkard et al., 1976; Costa
et al., 1974; Dodso out require more m-depth statutes.

Antimuscarinics do not alter cerebellar basal cGMP

levels (Biggio et al., 1977c,d; Burkard et al., 1976; Costa

et al., 1974; Dodson and Johnson, 1979; Mailman et al.,

1979; Mao et al. Antimuscarinics do not alter cerebellar basal cGMP
levels (Biggio et al., 1977c,d; Burkard et al., 1976; Costa
et al., 1974; Dodson and Johnson, 1979; Mailman et al.,
1979; Mao et al., 1974a), except at extremely high dose levels (Biggio et al., 1977c,d; Burkard et al., 1976; Costa si
et al., 1974; Dodson and Johnson, 1979; Mailman et al., a
1979; Mao et al., 1974a), except at extremely high doses el
(Ferrendelli et al., 1970; Rubin and Ferr et al., 1974; Dodson and Johnson, 1979; Mailman et al., 1979; Mao et al., 1974a), except at extremely high doses (Ferrendelli et al., 1970; Rubin and Ferrendelli, 1977).
However, at effective antimuscarinic doses, atropine 1979; Mao et al., 1974a), except at extremely high doses (Ferrendelli et al., 1970; Rubin and Ferrendelli, 1977).
However, at effective antimuscarinic doses, atropine or trihexyphenidyl has been shown to block the increase

oxotremorine, (Dinnendahl and Stock, 1975; Ferrendelli
et al., 1970; Opmeer et al., 1976) and the dopamine et al., 1970; Opmeer et al., 1976, 1975; Ferrendelli
et al., 1970; Opmeer et al., 1976) and the dopamine
agonist, apomorphine (Biggio et al., 1977c; Burkard et
al., 1976). In contrast, the antimuscarinic, methylatrooxotremorine, (Dinnendahl and Stock, 1975; Ferren
et al., 1970; Opmeer et al., 1976) and the dopar
agonist, apomorphine (Biggio et al., 1977c; Burkar
al., 1976). In contrast, the antimuscarinic, methyla
pine, which does no oxotremorine, (Dinnendahl and Stock, 1975; Ferrendelli
et al., 1970; Opmeer et al., 1976) and the dopamine
agonist, apomorphine (Biggio et al., 1977c; Burkard et
al., 1976). In contrast, the antimuscarinic, methylatro-
pin et al., 1970; Opmeer et al., 1976) and the dopamine agonist, apomorphine (Biggio et al., 1977c; Burkard et al., 1976). In contrast, the antimuscarinic, methylatropine, which does not cross the blood-brain barrier, does not agonist, apomorphine (Biggio et al., 1977c; Burkard et al., 1976). In contrast, the antimuscarinic, methylatro-
pine, which does not cross the blood-brain barrier, does
not block the effects of oxotremorine (Opmeer et al., al., 1976). In contrast, the antimuscarinic, methylatro-
pine, which does not cross the blood-brain barrier, does
not block the effects of oxotremorine (Opmeer et al.,
1976) or apomorphine (Burkard et al., 1976) to increas pine, which does not cross the blood-brain barrier, does
not block the effects of oxotremorine (Opmeer et al.,
1976) or apomorphine (Burkard et al., 1976) to increase
cerebellar cGMP, clearly indicating that the effects of t block the effects of oxotremorine (Opmeer et al., 76) or apomorphine (Burkard et al., 1976) to increase rebellar cGMP, clearly indicating that the effects of uscarinic agonists are centrally mediated.
The ganglionic (nic

cerebellar cGMP, clearly indicating that the effects of muscarinic agonists are centrally mediated.
The ganglionic (nicotinic) blockers, mecamylamine
and chlorisondamine, do not alter cerebellar cGMP levels
in control or c in control or cold-stressed rats (Mao et al., 1974a).
 3. The ganglionic (nicotinic) blockers, mecamylamine

and chlorisondamine, do not alter cerebellar cGMP levels

in control or cold-stressed rats (Mao et al., 1974a).

The ganglionic (nicotinic) blockers, mecaning and chlorisondamine, do not alter cerebellar cGM in control or cold-stressed rats (Mao et al., 1974 3. Thyrotropin-releasing hormone analogues. The TRH analogues, DN-1417, L-py and chlorisondamine, do not alter cerebellar cGMF
in control or cold-stressed rats (Mao et al., 1974a)
3. Thyrotropin-releasing hormone analogues. TR
the TRH analogues, DN-1417, L-pyroglutamyl-I
dyl-3,3-dimethyl proline am in control or cold-stressed rats (Mao et al., 1974a).
3. Thyrotropin-releasing hormone analogues. TRH and
the TRH analogues, DN-1417, L-pyroglutamyl-L-histi-
dyl-3,3-dimethyl proline amide, and L-pyro-2-aminodi-
pyl-L-hist 3. Thyrotropin-releasing hormone analogues. TRH and
the TRH analogues, DN-1417, L-pyroglutamyl-L-histi-
dyl-3,3-dimethyl proline amide, and L-pyro-2-aminodi-
pyl-L-histidyl-L-thiazolidine-4-carboxamide, all increase
cerebe dyl-3,3-dimethyl proline amide, and L-pyro-2-aminodi-
dyl-3,3-dimethyl proline amide, and L-pyro-2-aminodi-
pyl-L-histidyl-L-thiazolidine-4-carboxamide, all increase
cerebellar CGMP in rats and mice (Mailman et al., 1979;
 dy1-0,0-dimetry1 prome annue, and L-py10-2-annifodal
pyl-L-histidyl-L-thiazolidine-4-carboxamide, all increase
cerebellar cGMP in rats and mice (Mailman et al., 1973)
Narumi et al., 1983; Rinehart et al., 1986). The exade
 pyl-L-histidyl-L-thiazolidine-4-carboxamide, all increase
cerebellar cGMP in rats and mice (Mailman et al., 1979;
Narumi et al., 1983; Rinehart et al., 1986). The exact
mechanism of action remains undefined for these com-
 cerebellar cGMP in rats and mice (Mailman et al., 1979;
Narumi et al., 1983; Rinehart et al., 1986). The exact
mechanism of action remains undefined for these com-
pounds; however, experiments with central injections of
TR Narumi et al., 1983; Rinehart et al., 1986). The exact
mechanism of action remains undefined for these com-
pounds; however, experiments with central injections of
TRH and measurement of TRH levels in the CNS after
periphe mechanism of action remains underlied for these com-
pounds; however, experiments with central injections of
TRH and measurement of TRH levels in the CNS after
peripheral administration argue in favor of a CNS locus
of act peripheral administration argue in favor of a CNS locus
of action. Studies of lesions produced by 3-acetylpyridine
have ruled out a modulatory effect on the climbing fiber
system (Mailman et al., 1979).
A number of studies of action. Studies of lesions produced by 3-acetylpyridine

of action. Studies of lesions produced by 3-acetylpyridine
have ruled out a modulatory effect on the climbing fiber
system (Mailman et al., 1979).
A number of studies have demonstrated the ability of
TRH analogues to relea nave ruleu out a modulatory effect on the chimolog inser
system (Mailman et al., 1979).
A number of studies have demonstrated the ability of
TRH analogues to release dopamine in the striatum and
nucleus acuumbens (Narumi e A number of studies have demonstrated the ability of TRH analogues to release dopamine in the striatum and nucleus acuumbens (Narumi et al., 1983; Wood and Altar, 1988). Such data suggest that TRH analogues might, therefor TRH analogues to release dopamine in the striatum incleus acuumbens (Narumi et al., 1983; Wood a
Altar, 1988). Such data suggest that TRH analog
might, therefore, modulate cerebellar cGMP via a mortiber pathway. Experimen Altar, 1988). Such data suggest that TRH analogue
might, therefore, modulate cerebellar cGMP via a moss,
fiber pathway. Experiments with the tyrosine hydroxyl
ase inhibitor, α -methyl-paratyrosine, support this con-
clu Altar, 1988). Such data suggest that TRH analogues
might, therefore, modulate cerebellar cGMP via a mossy
fiber pathway. Experiments with the tyrosine hydroxyl-
ase inhibitor, α -methyl-paratyrosine, support this con-
c might, therefore, modulate cerebellar cGMP via a if
fiber pathway. Experiments with the tyrosine hyd
ase inhibitor, α -methyl-paratyrosine, support this
clusion in that such treatments block the effects of
DN-1417, and fiber pathway. Experiments with the tyrosine hydroxy
ase inhibitor, α -methyl-paratyrosine, support this conclusion in that such treatments block the effects of TRI
DN-1417, and the dopamine releaser, methamphetamine, o ase inhibitor, α -methyl-paratyrosine, support this conclusion in that such treatments block the effects of TRH,
DN-1417, and the dopamine releaser, methampheta-
mine, on cerebellar cGMP (Narumi et al., 1983). Simi-
lar clusion in that such treatments block the effects of TRH
DN-1417, and the dopamine releaser, methampheta
mine, on cerebellar cGMP (Narumi et al., 1983). Simi
larly, the D-2 receptor antagonist, pimozide, blocks the
effect DN-1417, and the dopamine releaser, methampheta-
mine, on cerebellar cGMP (Narumi et al., 1983). Simi-
larly, the D-2 receptor antagonist, pimozide, blocks the
effect of DN-1417, apomorphine, and methamphetamine
(Narumi et mine, on cerebellar cGMP (Narumi et al., 1983). Simi-
larly, the D-2 receptor antagonist, pimozide, blocks the
effect of DN-1417, apomorphine, and methamphetamine
(Narumi et al., 1983). However, D-2 receptor blockade
with larly, the D-2 receptor antagonist, pimozide, blocks the
effect of DN-1417, apomorphine, and methamphetamine
(Narumi et al., 1983). However, D-2 receptor blockade
with either pimozide (Narumi et al., 1983) or haloperidol
(effect of DN-1417, apomorphine, and methamphetamine (Narumi et al., 1983). However, D-2 receptor blockade with either pimozide (Narumi et al., 1983) or haloperidol (Mailman et al., 1979) does not block the actions of TRH. (Narumi et al., 1983). However, D-2 receptor blockade
with either pimozide (Narumi et al., 1983) or haloperidol
(Mailman et al., 1979) does not block the actions of
TRH. These apparently contradictory data require fur-
the (Mailman et al., 1979) does not block the actions of TRH. These apparently contradictory data require further evaluation, but a modulatory effect of these analogues on mossy fiber systems is suggested at this time. (Mailman et al., 1979) does not block the actions of TRH. These apparently contradictory data require fur-
ther evaluation, but a modulatory effect of these ana-
logues on mossy fiber systems is suggested at this time.
Dir TRH. These apparently contradict
ther evaluation, but a modulatory
logues on mossy fiber systems is sup
Direct effects of TRH on guanylat
discounted (Mailman et al., 1979).
In studies in which artificially vent

CGMP are followed by decreases at 30–60 min (Dinnen-
discounted (Mailman et al., 1979).
dahl and Stock, 1975). These effects may well involve In studies in which artificially ventilated rats paralyzed
later multisynaptic In studies in which artificially ventilated rats paralyzed logues on mossy fiber systems is suggested at this time.
Direct effects of TRH on guanylate cyclase have been
discounted (Mailman et al., 1979).
In studies in which artificially ventilated rats paralyzed
with d-tubocurarin Direct enects of 2 KH on guanyiate cyclose have been
discounted (Mailman et al., 1979).
In studies in which artificially ventilated rats paralyzee
with d -tubocurarine, as compared to free-moving ani
mals, were used, i In studies in which artificially ventilated rats paralyzed
with d-tubocurarine, as compared to free-moving ani-
mals, were used, it appears that, as observed with apo-
morphine, the effects of TRH on cerebellar cGMP are
si with *d*-tubocurarine, as compared to free-moving ani-
mals, were used, it appears that, as observed with apo-
morphine, the effects of TRH on cerebellar cGMP are
significantly reduced, indicating that increased motor
act mals, were used, it appears that, as observed
morphine, the effects of TRH on cerebellar c
significantly reduced, indicating that increas
activity contributes to the elevated cyclic nucle
les after this peptide (Lundberg e significantly reduced, indicating that increased motor activity contributes to the elevated cyclic nucleotide lev-
els after this peptide (Lundberg et al., 1979).
4. Cholecystokinin receptor modulators. There are cur-

rently two major CCK receptor subtypes. The CCK-A, or peripheral type, CCK receptor has high affinity only activity contributes to the elevated cyclic nucleotide lev-
els after this peptide (Lundberg et al., 1979).
4. Cholecystokinin receptor modulators. There are cur-
rently two major CCK receptor subtypes. The CCK-A,
or perip els after this peptide (Lundberg et al., 1979).
4. Cholecystokinin receptor modulators. There are currently two major CCK receptor subtypes. The CCK-A,
or peripheral type, CCK receptor has high affinity only
for the sulfat

cGMP IN THE
or more (reviewed by Wood et al., 1988b); this receptor
subtype is also present in the brain. Proglumide and CRcGMP IN THE or more (reviewed by Wood et al., 1988b); this receptor
subtype is also present in the brain. Proglumide and CR-
1409 are antagonists of this receptor subtype. The CCK-CGMP IN T
1409 are antagonists of this receptor subtype is also present in the brain. Proglumide and CI
1409 are antagonists of this receptor subtype. The CCI
1409 are antagonists of this receptor subtype. The CCI
1409 are or more (reviewed by Wood et al., 1988b); this receptor acts subtype is also present in the brain. Proglumide and CR-
1409 are antagonists of this receptor subtype. The CCK-
B, or brain, receptor is less discriminatory in or more (reviewed by Wood et al., 1988b); this receptor acts aboutly pe is also present in the brain. Proglumide and CR-
1409 are antagonists of this receptor subtype. The CCK-
19 B, or brain, receptor is less discriminato subtype is also present in the brain. Proglumide and CR-1409 are antagonists of this receptor subtype. The CCK-
B, or brain, receptor is less discriminatory in that it also
has high affinity for CCK-4 and unsulfated forms 1989). or brain, receptor is less discriminatory in that it also not as high affinity for CCK-4 and unsulfated forms of the deger peptide fragments (Wood et al., 1988b; Wood, N
89).
Initial observations that parenteral administra

has high affinity for CCK-4 and unsulfated forms of the larger peptide fragments (Wood et al., 1988b; Wood, 1989).

Initial observations that parenteral administration of CCK would antagonize the tremorogenic effects of ha Initial observations that parenteral administration of tremely high doses (60–240 mg/kg) this drug elicited CCK would antagonize the tremorogenic effects of har-
CCK would antagonize the tremorogenic effects of har-
maline 1989).

Initial observations that parenteral administration of

CCK would antagonize the tremorogenic effects of har-

maline (Zettler, 1983) led to the evaluation of CCK

analogues on cerebellar cGMP levels (Wood et al.,
 Initial observations that parenteral administration of track-CCK would antagonize the tremorogenic effects of hardomaline (Zettler, 1983) led to the evaluation of CCK G.
analogues on cerebellar cGMP levels (Wood et al., 19 CCK would antagonize the tremorogenic effects of har-
maline (Zettler, 1983) led to the evaluation of CCK GA
analogues on cerebellar CGMP levels (Wood et al., 5
1988b). CCK-8 sulfate, CCK-8 unsulfated, and CCK-4 pyr
all do maline (Zettler, 1983) led to the evaluation of CCK
analogues on cerebellar cGMP levels (Wood et al.,
1988b). CCK-8 sulfate, CCK-8 unsulfated, and CCK-4
all dose dependently decreased basal cerebellar cGMP
levels, suggesti analogues on cerebellar cGMP levels (Wood et al., 1988b). CCK-8 sulfate, CCK-8 unsulfated, and CCK-4 all dose dependently decreased basal cerebellar cGMP levels, suggesting activity at the CCK-B type receptor. This conclus 1988b). CCK-8 sulfate, CCK-8 unsulfated, and CCK-4 pyintide or CR 1804 to all dose dependently decreased basal cerebellar cGMP 197 levels, suggesting activity at the CCK-B type receptor. injurially of pro-
This conclusion all dose dependently decreased basal cerebellar cGMP 1
levels, suggesting activity at the CCK-B type receptor. if
This conclusion was supported by the inability of pro-
glumide or CR 1409 to antagonize the effects on cGMP levels, suggesting activity at the CCK-B type receptor. injecti
This conclusion was supported by the inability of pro-
glumide or CR 1409 to antagonize the effects on cGMP data a
levels. No opioid involvement was suggested This conclusion was supported by the inability of pro-
glumide or CR 1409 to antagonize the effects on cGMP
levels. No opioid involvement was suggested, because
naloxone pretreatment did not modify the effects of CCK
(Wood umide or CR 1409 to antagonize the effects on cGMP
vels. No opioid involvement was suggested, because
loxone pretreatment did not modify the effects of CCK
Vood et al., 1988b).
The effects of CCK-8 sulfate on cGMP levels,

levels. No opioid involvement was suggested, because
naloxone pretreatment did not modify the effects of CCK
(Wood et al., 1988b).
The effects of CCK-8 sulfate on cGMP levels, aug-
mented by various stimulants, were also i maloxone pretreatment did not modify the effects of CCK mo

(Wood et al., 1988b). bel

The effects of CCK-8 sulfate on cGMP levels, aug-

sup

mented by various stimulants, were also investigated dep

(Wood et al., 1988b; (Wood et al., 1988b).
The effects of CCK-8 sulfate on cGMP levels, a
mented by various stimulants, were also investiga
(Wood et al., 1988b; Wood, 1989). Pretreatments w
CCK were found to antagonize the effects of dopan
ner The effects of CCK-8 sulfate on cGMP levels, aug-
mented by various stimulants, were also investigated
(Wood et al., 1988b; Wood, 1989). Pretreatments with
CCK were found to antagonize the effects of dopami-
nergic (amphet (Wood et al., 1988b; Wood, 1989). Pretreatments w
CCK were found to antagonize the effects of dopan
nergic (amphetamine, apomorphine, DN-1417) and cl
linergic (oxotremorine) mossy fiber stimulation, as w
as climbing fiber CCK were found to antagonize the effects of dopami-
nergic (amphetamine, apomorphine, $DN-1417$) and cho-
linergic (oxotremorine) mossy fiber stimulation, as well nal
as climbing fiber activation by harmaline. This modulaas climbing fiber activation by harmaline. This modula-
tion was not a local cerebellar effect as reflected by lack
of activity after direct intracerebellar injections of CCK
on cerebellar cGMP have been reported, with inc linergic (oxotremorine) mossy fiber stimulation, as we
as climbing fiber activation by harmaline. This modul
tion was not a local cerebellar effect as reflected by la
of activity after direct intracerebellar injections of as climbing fiber activation by harmaline. This modulation was not a local cerebellar effect as reflected by lack
of activity after direct intracerebellar injections of CCK
(201). These data, therefore, argue in favor of a tion was not a local cerebellar effect as reflected by lack
of activity after direct intracerebellar injections of CCK
(201). These data, therefore, argue in favor of an extra-
incerebellar modulation of both climbing and of activity after direct intracerebellar injections of CCK on
(201). These data, therefore, argue in favor of an extra-
incerebellar modulation of both climbing and mossy fiber
linput to the cerebellum by CCK. In support o (201). These data, therefore, argue in favor of an extr. cerebellar modulation of both climbing and mossy fibling input to the cerebellum by CCK. In support of the hypothesis, CCK was found not to alter the effects of the toxin. put to the cerebellum by CCK. In support of this encepthesis, CCK was found not to alter the effects of the motracerebellar convulsants, pentylenetetrazol and picro-
xin. 1986
Caerulein, a peptide chemically related to CCK hypothesis, CCK was found not to alter the effects intracerebellar convulsants, pentylenetetrazol and proxim.

Caerulein, a peptide chemically related to CCK

isolated from frog skin, also antagonizes harmaline

pendent tr

intracerebellar convulsants, pentylenetetrazol and pic
toxin.
Caerulein, a peptide chemically related to CCK a
isolated from frog skin, also antagonizes harmaline-
pendent tremor (Zettler, 1983) and antagonizes harn
line-d toxin.
Caerulein, a peptide chemically related to CCK and
isolated from frog skin, also antagonizes harmaline-de-
pendent tremor (Zettler, 1983) and antagonizes harma-
line-dependent increases in cerebellar cGMP (Kageyama
 Caerulein, a peptide chemically related to CCK and
isolated from frog skin, also antagonizes harmaline-de-
pendent tremor (Zettler, 1983) and antagonizes harma-
line-dependent increases in cerebellar cGMP (Kageyama
and Kur isolated from frog skin, also antagonizes har
pendent tremor (Zettler, 1983) and antagoniz
line-dependent increases in cerebellar cGMP (
and Kurosawa, 1989). In contrast, this pepti
antagonize apomorphine- or methamphetami pendent tremor (Zettler, 1983) and antagonizes harma-
line-dependent increases in cerebellar cGMP (Kageyama
and Kurosawa, 1989). In contrast, this peptide did not
antagonize apomorphine- or methamphetamine-depend-
ent incr line-dependent increases in cerebellar cGMP (Kageyama conditionally). In contrast, this peptide did not 1 antagonize apomorphine- or methamphetamine-dependent increases in cerebellar cGMP (Kageyama and Kurosawa, 1989). Add and Kurosawa, 1989). In contrast, this peptide did not 1
antagonize apomorphine- or methamphetamine-depend-
ent increases in cerebellar cGMP (Kageyama and Ku-
rosawa, 1989). Additionally, the effects of this peptide s
were antagonize apomorphine- or methamphetamine-depend-
ent increases in cerebellar cGMP (Kageyama and Ku-
rosawa, 1989). Additionally, the effects of this peptide sen
were blocked by vagotomy, suggesting a peripheral locus lev ent increases in cerebellar cGMP (Kageyama and Kurensawa, 1989). Additionally, the effects of this peptide sextive were blocked by vagotomy, suggesting a peripheral locus level action. The differences observed for this pep rosawa, 1989). Additionally, the effects of this peptide sense were blocked by vagotomy, suggesting a peripheral locus leve of action. The differences observed for this peptide may dop well relate to a species difference b were blocked by vagotomy, suggesting a peripheral locus
of action. The differences observed for this peptide may
well relate to a species difference because caerulein was
studied in rats and the CCK studies were performed of action. The differences observed for this peptide may dop-
well relate to a species difference because caerulein was fibe-
studied in rats and the CCK studies were performed in 6.
mice. Another clear difference was the well relate to a species difference because caerulein was fib
studied in rats and the CCK studies were performed in
mice. Another clear difference was the duration of effect; siv
caerulein antagonized the effects of harmal studied in rats and the CCK studies were performed in
mice. Another clear difference was the duration of effect;
caerulein antagonized the effects of harmaline up to 30 C
h postinjection in the rat, long after the peptide mice. Another clear difference was the duration of effect;
caerulein antagonized the effects of harmaline up to 30
h postinjection in the rat, long after the peptide had been
degraded, whereas CCK only antagonized the effe h postinjection in the rat, long after the peptide had been degraded, whereas CCK only antagonized the effects of harmaline up to 1 h in the mouse. These data argue for a long-term adaptive mechanism in the actions of caer degraded, whereas CCK only antagonized the effects of
harmaline up to 1 h in the mouse. These data argue for
a long-term adaptive mechanism in the actions of caeru-
lein in the rat.
5. Opiates. Morphine has been shown to d graded, whereas CCK only antagonized the effects of effermaline up to 1 h in the mouse. These data argue for long-term adaptive mechanism in the actions of caeru-
in in the rat.
5. Opiates. Morphine has been shown to dose harmaline up to 1 h in the mouse. These data argue for
a long-term adaptive mechanism in the actions of caeru-
lein in the rat.
5. Opiates. Morphine has been shown to dose and time
dependently decrease cerebellar cGMP leve

(Biggio et al., 1977b; Katz and Catravas, 1976). These largest al.

EREBELLUM
actions were stereospecific as assessed with the stere
isomers of the opiate agonist viminol (Biggio et a EREBELLUM 19
actions were stereospecific as assessed with the stereo-
isomers of the opiate agonist viminol (Biggio et al.,
1977b). The opiate receptor antagonist, naltrexone, did 19
2015 actions were stereospecific as assessed with the stereo-
1977b). The opiate receptor antagonist, naltrexone, did
1977b). The opiate receptor antagonist, naltrexone, did
1977b). The opiate receptor antagonist, naltr notions were stereospecific as assessed with the stereo-
isomers of the opiate agonist viminol (Biggio et al.,
1977b). The opiate receptor antagonist, naltrexone, did
not alter basal cGMP levels but did antagonize the
dece actions were stereospectic as assessed with the stereo-
isomers of the opiate agonist viminol (Biggio et al.,
1977b). The opiate receptor antagonist, naltrexone, did
not alter basal cGMP levels but did antagonize the
decea 1977b). The opiate receptor antagonist, naltrexone, did not alter basal cGMP levels but did antagonize the deceases elicited by opiate agonists (Biggio et al., 1977b). Naloxone, at opioid receptor antagonist doses, also di not alter basal cGMP levels but did antagonize the
deceases elicited by opiate agonists (Biggio et al., 1977b).
Naloxone, at opioid receptor antagonist doses, also did
not alter basal cerebellar cGMP levels; however, at ex deceases elicited by opiate agonists (Biggio et al., 1977b).
Naloxone, at opioid receptor antagonist doses, also did
not alter basal cerebellar cGMP levels; however, at ex-
tremely high doses (60–240 mg/kg) this drug elici not alter basal cerebellar cGMP levels; however, at extremely high doses $(60-240 \text{ mg/kg})$ this drug elicited

(Wood et al., 1988b; Wood, 1989). Pretreatments with injections of the enkephalin analogue, D -Ala₂-Met-en-CCK were found to antagonize the effects of dopami-
CCK were found to antagonize the effects of dopami-
neparat dose-dependent increases in cGMP, presumably via a GABA-antagonist action (Gumulka et al., 1979b).
The actions of morphine were not altered by 3-acetyl-
pyridine lesions of the climbing fibers (Biggio et al., 1977d), were pyridine lesions of the climbing fibers (Biggio et al., 1977d), were not reproduced by direct intracerebellar injections (Biggio et al., 1977b,d), but were reproduced by intrastriatal injections (Biggio et al., 1977b,d). T GABA-antagonist action (Gumulka et al., 1979b).
The actions of morphine were not altered by 3-acetyl-
pyridine lesions of the climbing fibers (Biggio et al.,
1977d), were not reproduced by direct intracerebellar
injections The actions of morphine were not altered by 3-acetyl-
pyridine lesions of the climbing fibers (Biggio et al.,
1977d), were not reproduced by direct intracerebellar
injections (Biggio et al., 1977b,d), but were reproduced
b pyridine lesions of the climbing fibers (Biggio et al., 1977d), were not reproduced by direct intracerebellar injections (Biggio et al., 1977b,d), but were reproduced by intrastriatal injections (Biggio et al., 1977b,d). T 1977d), were not reproduced by direct intracerebellar
injections (Biggio et al., 1977b,d), but were reproduced
by intrastriatal injections (Biggio et al., 1977b,d). These
data are consistent with a modulatory effect of str mjections (Eiggio et al., 19776,0), but were reproduced
by intrastriatal injections (Biggio et al., 1977b,d). These
data are consistent with a modulatory effect of striatal
opioid synapses on the striatal output neurons wh opioid synapses on the striatal output neurons which
modulate pontocerebellar mossy fiber input to the cere-
bellum (fig. 4; section V.B.1). This conclusion is further
supported by the report (Biggio et al., 1978c) of dose opioid synapses on the striatal output neurons which
modulate pontocerebellar mossy fiber input to the cere-
bellum (fig. 4; section V.B.1). This conclusion is further
supported by the report (Biggio et al., 1978c) of dose modulate pontocerebellar mossy fiber input to the
bellum (fig. 4; section V.B.1). This conclusion is fu
supported by the report (Biggio et al., 1978c) of d
dependent decreases in cerebellar cGMP by intrasti
injections of t bellum (fig. 4; section V.B.1). This conclusion is further
supported by the report (Biggio et al., 1978c) of dose-
dependent decreases in cerebellar cGMP by intrastriatal
injections of the enkephalin analogue, D-Ala₂-Met supported by the report (Biggio et al., 1978c) of dose-
dependent decreases in cerebellar cGMP by intrastriatal
injections of the enkephalin analogue, D-Ala₂-Met-en-
kephalinamide. As with morphine, the actions of this
p injections of the enkephalin analogue, $D - Ala_2 - Met-en$ bellar administration (Biggio et al., 1978c). peptide derivative were reversed by the opiate antagonist naltrexone and were not replicated by direct intracere-

in some strains and were not replicated by direct intracent-
bellar administration (Biggio et al., 1978c).
In mice, strain differences in the actions of morphine
on cerebellar cGMP have been reported, with increases
in som In mice, strain differences in the actions of morphine
on cerebellar cGMP have been reported, with increases
in some strains and decreases in others (Askew and
Charalampous, 1976; Racagni et al., 1979). These differ-
ences on cerebellar cGMP have been reported, with increases
in some strains and decreases in others (Askew and
Charalampous, 1976; Racagni et al., 1979). These differ-
ences may well reflect strain differences in the effects of in some strains and decreases in others (Askew and Charalampous, 1976; Racagni et al., 1979). These differences may well reflect strain differences in the effects of morphine on dopamine release within the striatum (Wood a Charaanipous, 1970, Racagin et al., 1979). These unfer-
ences may well reflect strain differences in the effects of
morphine on dopamine release within the striatum
(Wood and Altar, 1989; Wood and Richard, 1982; Wood,
1983 ences may wen renect stram unrerences in the enects of
morphine on dopamine release within the striatum
(Wood and Altar, 1989; Wood and Richard, 1982; Wood,
1983) because C57BL/6J mice had parallel increases in
striatal do (Wood and Altar, 1989; Wood and Richard, 1982; Wood, 1983) because C57BL/6J mice had parallel increases in striatal dopamine release, increased cerebellar cGMP, and enhanced motor activity, whereas DBA mice had decrements 1983) because C57BL/6J mice had parallel increases in
striatal dopamine release, increased cerebellar cGMP,
and enhanced motor activity, whereas DBA mice had
decrements in striatal dopamine release and cerebellar
cGMP with 1979). and enhanced motor activity, whereas DBA mice had decrements in striatal dopamine release and cerebellar cGMP with no change in motor activity (Racagni et al., 1979).
During withdrawal, morphine-dependent rats possess

decrements in striatal dopamine release and cerebellar cGMP with no change in motor activity (Racagni et al., 1979).

During withdrawal, morphine-dependent rats possess

elevated basal cerebellar cGMP levels and are more
 cGMP with no change in motor activity (Racagni et al., 1979).

During withdrawal, morphine-dependent rats possess

elevated basal cerebellar cGMP levels and are more

sensitive to apomorphine-dependent increases in cGMP

l 1979).

During withdrawal, morphine-dependent rats posse

elevated basal cerebellar CGMP levels and are mo

sensitive to apomorphine-dependent increases in cGM

levels (Volicer et al., 1977), again supporting an opio

dopa During withdrawal, morphine-dependent rats possess
elevated basal cerebellar cGMP levels and are more
sensitive to apomorphine-dependent increases in cGMP
levels (Volicer et al., 1977), again supporting an opioid-
dopamine elevated basal cerebells
sensitive to apomorphin
levels (Volicer et al., 197
dopamine linkage in the
fiber pathway (fig. 4).
6. Indole modulators. maitive to apomorphine-dependent increases in cGM
vels (Volicer et al., 1977), again supporting an opioi
pamine linkage in the striato-pontocerebellar mos
er pathway (fig. 4).
6. *Indole modulators*. The cerebellum receive

levels (Volicer et al., 1977), again supporting an opioid-
dopamine linkage in the striato-pontocerebellar mossy
fiber pathway (fig. 4).
6. *Indole modulators*. The cerebellum receives exten-
sive serotonergic innervation dopamine linkage in the striato-pontocerebellar mossy
fiber pathway (fig. 4).
6. *Indole modulators*. The cerebellum receives exten-
sive serotonergic innervation from the raphe (Palay and
Chan-Palay, 1974); however, a com following the reference of the cerebellum receives extensive serotonergic innervation from the raphe (Palay and Chan-Palay, 1974); however, a comprehensive study of serotonin receptor agonists and antagonists, for their ef ve serotonergic innervation from the raphe (Palay and
nan-Palay, 1974); however, a comprehensive study of
rotonin receptor agonists and antagonists, for their
fects on cerebellar cGMP, has never been undertaken.
The seroto

Chan-Palay, 1974); however, a comprehensive study of
serotonin receptor agonists and antagonists, for their
effects on cerebellar cGMP, has never been undertaken.
The serotonin uptake inhibitor, fluoxetine, and the
seroton serotonin receptor agonists and antagonists, for their
effects on cerebellar cGMP, has never been undertaken.
The serotonin uptake inhibitor, fluoxetine, and the
serotonin precursor, 5-hydroxytryptophan, did not alter
basa effects on cerebellar cGMP, has never been undertaken.
The serotonin uptake inhibitor, fluoxetine, and the
serotonin precursor, 5-hydroxytryptophan, did not alter
basal cGMP levels (Chung, 1983). The nonselective and
nonsp The serotonin uptake inhibitor, fluoxetine, and the serotonin precursor, 5-hydroxytryptophan, did not alter based cGMP levels (Chung, 1983). The nonselective an nonspecific serotonin agonists lysergic acid (Burkard dal., 1 serotonin precursor, 5-hydroxytryptophan, did not alter
basal cGMP levels (Chung, 1983). The nonselective and
nonspecific serotonin agonists lysergic acid (Burkard et
al., 1976) and 5-methoxy-dimethyl-tryptamine (Ly-
koura

receptor type involved in this action is not known. In the 20
receptor type involved in this action is not known. In th
case of lysergic acid, the increases in cGMP were coun
teracted by the neuroleptic, haloperidol, suggesting po w
receptor type involved in this action is not known. In the
case of lysergic acid, the increases in cGMP were coun-
teracted by the neuroleptic, haloperidol, suggesting pos-
sible dopaminergic involvement (Burkard et al., receptor type involved in this action is not known. In the case of lysergic acid, the increases in cGMP were counteracted by the neuroleptic, haloperidol, suggesting possible dopaminergic involvement (Burkard et al., 1976) receptor type involved in this action is not known. In the case of lysergic acid, the increases in cGMP were counteracted by the neuroleptic, haloperidol, suggesting possible dopaminergic involvement (Burkard et al., 1976) case of lysergic acid, the increases in cGMP were counteracted by the neuroleptic, haloperidol, suggesting possible dopaminergic involvement (Burkard et al., 1976) while those of 5-methoxy-dimethyl-tryptamine were not bloc teracted by the neuroleptic, haloperidol, suggesting possible dopaminergic involvement (Burkard et al., 1976)
while those of 5-methoxy-dimethyl-tryptamine were not
blocked by haloperidol, cyproheptadine, or methysergide
(L sible dopaminergic involvement (Burkard et al., 19
while those of 5-methoxy-dimethyl-tryptamine were
blocked by haloperidol, cyproheptadine, or methyser
(Lykouras et al., 1980). The serotonin antagonists, or
nanserin (Chun while those of 5-methoxy-dimethyl-tryptamine were not
blocked by haloperidol, cyproheptadine, or methysergide (Di
(Lykouras et al., 1980). The serotonin antagonists, cin-
nanserin (Chung, 1983) and cyproheptadine (Dinnenblocked by haloperidol,
(Lykouras et al., 1980).
nanserin (Chung, 1983
dahl and Gumulka, 19
levels in the cerebellum
In summary, little is nanserin (Chung, 1983) and cyproheptadine (Dinnen-
dahl and Gumulka, 1977), did not alter basal cGMP
levels in the cerebellum.
In summary, little is known of the serotonergic mod-
ulation of cerebellar cGMP levels; however

dahl and Gumulka, 1977), did not alter basal cGMP
levels in the cerebellum.
In summary, little is known of the serotonergic mod-
ulation of cerebellar cGMP levels; however, with the
wealth of new pharmacological tools for revels in the cerebellum.
In summary, little is known of the serotonergic modulation of cerebellar cGMP levels; however, with the
wealth of new pharmacological tools for serotonergic
receptor subtypes, our knowledge in thi In summary, little

ulation of cerebella

wealth of new phe

receptor subtypes,

doubtedly increase.

7. Noradrenergic ation of cerebellar cGMP levels; however, with the
alth of new pharmacological tools for serotonergic
reptor subtypes, our knowledge in this area will un-
ubtedly increase.
7. *Noradrenergic modulators*. The cerebellum als

wealth of new pharmacological tools for serotonergic
receptor subtypes, our knowledge in this area will un-
doubtedly increase.
7. Noradrenergic modulators. The cerebellum also re-
ceives extensive noradrenergic innervatio receptor subtypes, our knowledge in this area will undoubtedly increase.

7. Noradrenergic modulators. The cerebellum also receives extensive noradrenergic innervation from the locus coereleus (Bloom et al., 1971; Olsen a doubtedly increase.

7. Noradrenergic modulators. The cerebellum also recives extensive noradrenergic innervation from the locus coereleus (Bloom et al., 1971; Olsen and Fuxe, 1971; Studies of the β -adrenergic agonist, 7. Noradrenergic modulators. The cerebellum also receives extensive noradrenergic innervation from the locus coereleus (Bloom et al., 1971; Olsen and Fuxe, 1971)
Studies of the β -adrenergic agonist, isoproterenol (Haid ceives extensive noradrenergic innervation from the locus coereleus (Bloom et al., 1971; Olsen and Fuxe, 1971).
Studies of the β -adrenergic agonist, isoproterenol (Haidamous et al., 1980), and the β -adrenergic antag Studies of the β -adrenergic agonist, isoproterenol (Hai-
damous et al., 1980), and the β -adrenergic antagonist,
propranolol (Dinnendahl and Gumulka, 1977; Narumi et
al., 1983), have shown no changes in basal cerebel cGMP levels.
In contrast, the α_1 -adrenergic agonists, methoxamine mous et al., 1980), and the β -adrenergic antagonist,
opranolol (Dinnendahl and Gumulka, 1977; Narumi et
, 1983), have shown no changes in basal cerebellar
:MP levels.
In contrast, the α_1 -adrenergic agonists, methox

propranolol (Dinnendahl and Gumulka, 1977; Narumi et jection.

al., 1983), have shown no changes in basal cerebellar the

cGMP levels. Execution E. The contrast, the α_1 -adrenergic agonists, methoxamine N.

and phenyle al., 1983), have shown no changes in basal cerebellar
cGMP levels.
In contrast, the α_1 -adrenergic agonists, methoxamine
and phenylephrine, increased cerebellar cGMP levels, as
did intraventricular administration of no In contrast, the α_1 -adrenergic agonists, methoxamine
and phenylephrine, increased cerebellar cGMP levels, as
did intraventricular administration of norepinephrine
itself (Haidamous et al., 1980). The α_2 agonist cl did intraventricular administration of norepinephrine
itself (Haidamous et al., 1980). The α_2 agonist clonidine
decreased cerebellar cGMP (Haidamous et al., 1980).
Similarly, the α_1 antagonists phenoxybenzamine (C itself (Haidamous et al., 1980). The α_2 agonist clonidic decreased cerebellar cGMP (Haidamous et al., 198
Similarly, the α_1 antagonists phenoxybenzamine (Chuiss); Haidamous et al., 1980) and phentolamine (Hamous e decreased cerebellar cGMP (Haidamous et al., 1980). CGN
Similarly, the α_1 antagonists phenoxybenzamine (Chung, dog
1983; Haidamous et al., 1980) and phentolamine (Hai-haridamous et al., 1980) decreased cGMP in the ra Similarly, the α_1 antagonists phenoxybenzamine (Chung, dog
1983; Haidamous et al., 1980) and phentolamine (Hai-
damous et al., 1980) decreased cGMP in the rat cerebel-
lum. However, phentolamine has been reported not damous et al., 1980) decreased cGMP in the rat cerebel-
lum. However, phentolamine has been reported not to
alter cGMP in the mouse cerebellum (Dinnendahl and
Gumulka, 1977). mous et al., 1980) decreased cGMP in the rat cerebel-
m. However, phentolamine has been reported not to 194
ter cGMP in the mouse cerebellum (Dinnendahl and per
mulka, 1977).
The α_2 antagonist, yohimbine, and the mixe

hum. However, phentolamine has been reported not to
alter cGMP in the mouse cerebellum (Dinnendahl and per
Gumulka, 1977).
The α_2 antagonist, yohimbine, and the mixed α_1/α_2 ap
antagonist, piperoxan, did not alter cerebellum (Haidamous et al., 1980).
In toto, it appears from these studies that a noradre-The α_2 antagonist, yohimbine, and the mixed α_1/α_2
antagonist, piperoxan, did not alter cGMP levels in the
cerebellum (Haidamous et al., 1980).
In toto, it appears from these studies that a noradre-
nergic fiber i antagonist, piperoxan, did not alter cGMP levels in the

antagonist, piperoxan, did not alter cGMP levels in the
cerebellum (Haidamous et al., 1980).
In toto, it appears from these studies that a noradre
nergic fiber input to the cerebellum innervates α_1 -adre
nergic recepto cerebellum (Haidamous et al., 1980).

In toto, it appears from these studies that a noradre-

nergic fiber input to the cerebellum innervates α_1 -adre-

nergic receptors which, when activated, augment cere-

bellar cGM In toto, it appears from these studies that a noradre-
nergic fiber input to the cerebellum innervates α_1 -adre-
nergic receptors which, when activated, augment cere-
bellar cGMP content. Some data also suggest that th mergic fiber input to the cerebellum innervates α_1 -adre-
nergic receptors which, when activated, augment cere-
bellar cGMP content. Some data also suggest that there
may be a basal ongoing tone to this noradrenergic i bellar cGMP content. Some data also suggest that there may be a basal ongoing tone to this noradrenergic input.
Consistent with these data are observations that NMDA augments norepinephrine release from cerebellar slices, may be a basal ongoing tone to this noradrenergic input.
Consistent with these data are observations that NMDA
augments norepinephrine release from cerebellar slices,
actions blocked both by competitive and noncompetitive
 Consistent with these data are observations that NMDA actions blocked both by competitive and noncompetitive
NMDA receptor antagonists (Yi et al., 1988). An exten-
sion of these data are the observations that the nonse-
lective α_1 antagonist, clozapine, and the selective augments norepinephrine release from cerebellar slices,
actions blocked both by competitive and noncompetitive
NMDA receptor antagonists (Yi et al., 1988). An exten-
sion of these data are the observations that the nonseactions blocked both by competitive and noncompetitive NMDA receptor antagonists (Yi et al., 1988). An extension of these data are the observations that the nonselective α_1 antagonist, clozapine, and the selective α NMDA receptor antagonists (Yi et al., 1988). An extension of these data are the observations that the nonselective α_1 antagonist, clozapine, and the selective α_1 is antagonist, WB-4101, both block increases in cer sion of these data are the observations that the nonse-
lective α_1 antagonist, clozapine, and the selective α_1
antagonist, WB-4101, both block increases in cerebellar
cGMP, in vivo, induced by NMDA receptor activa lective α_1 antagonist, clozapine, and the selective α_1 is antagonist, WB-4101, both block increases in cerebellar cGMP, in vivo, induced by NMDA receptor activation but not quisqualate receptor activation (Rao et and CGMP, in vivo, induced by NMDA receptor activation
cGMP, in vivo, induced by NMDA receptor activation
but not quisqualate receptor activation (Rao et al., 1990i;
Wood and Rao, 1990; section III.B.6). These data are all but not quisqualat
Wood and Rao, 1:
consistent with a
norepinephrine re
to the cerebellum

dahl and Gumulka, 1977), did not alter basal $cGMP$ atrial naturistic factor which increased $cGMP$ levels in levels in the cerebellum.
In summary, little is known of the serotonergic mod-
ulation of cerebellar $cGMP$ levels VI. Miscellaneous **Pharmacological Agents** VI. Miscellaneous Pharmacological Agents
A number of miscellaneous pharmacological agents
we been studied for their effects on cerebellar cGMP D
VI. Miscellaneous Pharmacological Agents
A number of miscellaneous pharmacological agents
have been studied for their effects on cerebellar cGMP
levels. These compounds include the antihistaminics, VI. Miscellaneous Pharmacological Agents
A number of miscellaneous pharmacological agents
have been studied for their effects on cerebellar cGMP
levels. These compounds include the antihistaminics,
diphenhydramine and anta A number of miscellaneous pharmacological agents
have been studied for their effects on cerebellar cGMP
levels. These compounds include the antihistaminics,
diphenhydramine and antazoline, which were inactive
(Dinnendahl a levels. These compounds include the antihistaminics, diphenhydramine and antazoline, which were inactive (Dinnendahl and Gumulka, 1977); the prostaglandin synthetase inhibitor, indomethacin, which was inactive levels. These compounds include the antihistaminics,
diphenhydramine and antazoline, which were inactive
(Dinnendahl and Gumulka, 1977); the prostaglandin syn-
thetase inhibitor, indomethacin, which was inactive
(Dinnendah diphenhydramine and antazoline, which were inactive

(Dinnendahl and Gumulka, 1977); the prostaglandin syn-

thetase inhibitor, indomethacin, which was inactive

(Dinnendahl and Gumulka, 1977; Mao et al. 1974a); and

atria (Dinnendahl and Gumulka, 1977); the prostaglandin syn-
thetase inhibitor, indomethacin, which was inactive
(Dinnendahl and Gumulka, 1977; Mao et al. 1974a); and
atrial naturistic factor which increased cGMP levels in
granu thetase inhibitor, indomethacin, which was inact
(Dinnendahl and Gumulka, 1977; Mao et al. 1974a); a
atrial naturistic factor which increased cGMP levels
granule cell cultures (Hoffman et al., 1989b) and in v.
after intrac (Dinnendahl and G
atrial naturistic fa
granule cell culture
after intracerebella
lished observations granule cell cultures (Hoffman et al., 1989b) and in vivo
after intracerebellar administration (P. L. Wood, unpub-
lished observations).
VII. Conclusions

From the great array of pharmacological data pre-Sented observations).

VII. Conclusions

From the great array of pharmacological data pre-

sented in this review can be distilled several key features

of the transduction mechanisms modulating cerebellar VII. Conclusions
From the great array of pharmacological data pre-
sented in this review can be distilled several key features
of the transduction mechanisms modulating cerebellar
cGMP levels. The EAA pathways within and a From the great array of pharmacological data pre-
sented in this review can be distilled several key features
of the transduction mechanisms modulating cerebellar
cGMP levels. The EAA pathways within and afferent to
the c From the great array of pharmacological data presented in this review can be distilled several key features of the transduction mechanisms modulating cerebellar cGMP levels. The EAA pathways within and afferent to the cer of the transduction mechanisms modulating cerebellar
cGMP levels. The EAA pathways within and afferent to
the cerebellum are key focal points receiving inputs from
dopaminergic, cholinergic, and peptidergic neuronal pro-
j cGMP levels. The EAA pathways within and afferent to
the cerebellum are key focal points receiving inputs from
dopaminergic, cholinergic, and peptidergic neuronal pro-
jections. The EAA receptor subtype involved in vivo i the cerebellum are key focal points receiving inputs from
dopaminergic, cholinergic, and peptidergic neuronal pro-
jections. The EAA receptor subtype involved in vivo in
the postsynaptic transduction of these diverse input dopaminergic, cholinergic, and peptidergic neuronal projections. The EAA receptor subtype involved in vivo in
the postsynaptic transduction of these diverse inputs to
EAA-utilizing pathways appears mainly to involve
NMDA-t declions. The EAA receptor subtype involved in vivo in
the postsynaptic transduction of these diverse inputs to
EAA-utilizing pathways appears mainly to involve
NMDA-type EAA receptors. This hypothesis comes from
the obser the postsynaptic transduction of these diverse inputs to EAA-utilizing pathways appears mainly to involved NMDA-type EAA receptors. This hypothesis comes from the observations that competitive NMDA antagonist block locomot EAA-utilizing pathways appears mainly to involve

NMDA-type EAA receptors. This hypothesis comes from

the observations that competitive NMDA antagonists

block locomotor-dependent increases in cGMP (Mc-

Caslin and Morga NMDA-type EAA receptors. This hypothesis comes from
the observations that competitive NMDA antagonists
block locomotor-dependent increases in cGMP (Mc-
Caslin and Morgan, 1986b,c) and block increases in
cGMP elicited by ph From the great array of pharmacological data presented in this review can be distilled several key features of the transduction mechanisms modulating cerebellar cGMP levels. The EAA pathways within and afferent to dopamin block locomotor-dependent increases in cGMP (McCaslin and Morgan, 1986b,c) and block increases in cGMP elicited by pharmacological potentiation of endogenous EAA release by climbing fiber activation with harmaline (Wood et CGINIP encited by pharmacological potentiation of en-
dogenous EAA release by climbing fiber activation with
harmaline (Wood et al., 1982, 1989c,d, 1990a,b), activa-
tion of mossy fibers with oxotremorine (Wood et al.,
198 harmaline (Wood et al., 1982, 1989c,d, 1990a,b), activation of mossy fibers with oxotremorine (Wood et al., 1982), or removal of inhibitory GABAergic inputs with pentylenetetrazol (Ferrendelli et al., 1980; Wood et al., 19 tion of mossy fibers with oxotremorine (Wood et al., 1982), or removal of inhibitory GABAergic inputs with pentylenetetrazol (Ferrendelli et al., 1980; Wood et al., 1990a). The anatomical locus of NMDA actions also appears 1982), or removal of inhibitory GABAergic inputs with
pentylenetetrazol (Ferrendelli et al., 1980; Wood et al.,
1990a). The anatomical locus of NMDA actions also
appears to be very specific in that the major portion of
NM pentylenetetrazol (Ferrendelli et al., 1980; Wood et al., 1990a). The anatomical locus of NMDA actions also appears to be very specific in that the major portion of NMDA effects on cerebellar cGMP appear to be mediated by 1990a). The anatomical locus of NMDA actions also
appears to be very specific in that the major portion of
NMDA effects on cerebellar cGMP appear to be me-
diated by modulation of cerebellar norepinephrine re-
lease (Marwa diated by modulation of cerebellar norepinephrine re-
lease (Marwaha et al., 1980; 1981; Rao et al., 1990h;
Wood and Rao, 1990). These effects appear to be finally
dependent upon α_1 receptor activation of postsynaptic NMDA effects on cerebellar cGMP appear to be me-
diated by modulation of cerebellar norepinephrine re-
lease (Marwaha et al., 1980; 1981; Rao et al., 1990h;
Wood and Rao, 1990). These effects appear to be finally
dependen diated by modulation of cerebellar norepinephrine re-
lease (Marwaha et al., 1980; 1981; Rao et al., 1990h;
Wood and Rao, 1990). These effects appear to be finally
dependent upon α_1 receptor activation of postsynaptic lease (Marwaha et al., 1980; 1981; Rao et al., 1990h;
Wood and Rao, 1990). These effects appear to be finally
dependent upon α_1 receptor activation of postsynaptic
neurons (fig. 5); the residual (20–30%) activity of N wood and raao, 1990). I hese effects appear to be finally dependent upon α_1 receptor activation of postsynaptic neurons (fig. 5); the residual (20–30%) activity of NMDA on cGMP levels remaining after α_1 blockade p neurons (fig. 5); the re
on cGMP levels remai
involves NMDA activ
(fig. 5; Favaron et al.,
leweski et al., 1987).
The other general 1 on cGMP levels remaining after α_1 blockade presumably
involves NMDA activation of receptors on granule cells
(fig. 5; Favaron et al., 1988; Novelli et al., 1987; Wrob-
leweski et al., 1987).
The other general feature

involves NMDA activation of receptors on granule cells
(fig. 5; Favaron et al., 1988; Novelli et al., 1987; Wrob-
leweski et al., 1987).
The other general feature of this system is that aug-
mentation of cerebellar cGMP by (fig. 5; Favaron et al., 1988; Novelli et al., 1987; Wrobleweski et al., 1987).

The other general feature of this system is that aug-

mentation of cerebellar cGMP by EAA receptors and,

therefore, all afferents acting th involves prior synthesis of this system is that augmentation of cerebellar cGMP by EAA receptors and, therefore, all afferents acting through EAA pathways involves prior synthesis of NO. This generation of NO by EAA recept mentation of cerebellar cGMP by EAA receptors and,
therefore, all afferents acting through EAA pathways
involves prior synthesis of NO. This generation of NO
by EAA receptor-bearing neurons leads to a tremendous
amplificat diversion. The anti-metally diversity of No. This generation of NO
by EAA receptor-bearing neurons leads to a tremendous
amplification system in that NO can diffuse to a wide
diversity of neuronal and glial cell types as w the profit synthesis of NO. This generation of NC
by EAA receptor-bearing neurons leads to a tremendous
amplification system in that NO can diffuse to a widd
diversity of neuronal and glial cell types as well as nerve
term by EAA receptor-bearing neurons leads to a tremendous
amplification system in that NO can diffuse to a wide
diversity of neuronal and glial cell types as well as nerve
terminals where it stimulates guanylate cyclase to gen amplification system in that NO can diffuse to a wide
diversity of neuronal and glial cell types as well as nerve
terminals where it stimulates guanylate cyclase to gen-
erate cGMP (fig. 5). The diverse targets where cGMP
 diversity of neuronal and glial cell types as well as nerve
terminals where it stimulates guanylate cyclase to gen-
erate cGMP (fig. 5). The diverse targets where cGMP
then acts remain to be defined; however, the diversity

spet

The externate activity in granule and Purkinje cell populations with a resultant activation of guanylate cyclase and cGMP synthesis in diverse cell FIG. 5. Proposed scheme for the NMDA augmentation of NO synthase activity in granule and Purkinje cell populations with a resultant activation of guanylate cyclase and cGMP synthesis in diverse cell populations after diffu Populations after diffusion of the NMDA augmentation of NO synthesis activation of guanylate cyclase and cGMP synthesis in diverse cell
populations after diffusion of NO. In the case of Purkinje cells, the
NMDA modulation activation of guanylate cyclase and cGMP synthesis in diverse cell
populations after diffusion of NO. In the case of Purkinje cells, the
NMDA modulation appears to be indirect via effecting norepinephrine
release first. Ar activation of guanylate cyclase and cGMP synthesis in diverse corpopulations after diffusion of NO. In the case of Purkinje cells, the NMDA modulation appears to be indirect via effecting norepinephrine.
The release first.

populations arter dirtusion of NO. In the case of Furkinge cells, the
NMDA modulation appears to be indirect via effecting norepinephrine
release first. Arg, arginine; DA, dopamine; NE, norepinephrine.
chter et al., 1980) release first. Arg, arginine; DA, dopamine; NE, norepinephrine.
release first. Arg, arginine; DA, dopamine; NE, norepinephrine.
chter et al., 1980) offers targets worthy of study. Addi-
tionally the subsequent steps leadin chter et al., 1980) offers targets v
tionally the subsequent steps le
nuclear protooncogenes, such as
definition (Szekely et al., 1989).
As a large number of positive re Let et al., 1980) offers targets worthy of study. Addi-

As a large protooncogenes, such as c-fos, require clearer

finition (Szekely et al., 1989).

As a large number of positive regulatory inputs appear

act via EAA-util

to act via EAA-utilizing synapses to augment cerebellar
definition (Szekely et al., 1989).
As a large number of positive regulatory inputs appear
to act via EAA-utilizing synapses to augment cerebellar
cGMP, a number of in definition (Szekely et al., 1989).

As a large number of positive regulatory inputs appear

to act via EAA-utilizing synapses to augment cerebellar

cGMP, a number of inhibitory influences appear to act

via inhibitory GA As a large number of positive regulatory inputs appear
to act via EAA-utilizing synapses to augment cerebellar
cGMP, a number of inhibitory influences appear to act
via inhibitory GABAergic interneurons in the cerebellum
 to act via EAA-utilizing synapses to augment cerebellar
cGMP, a number of inhibitory influences appear to act
via inhibitory GABAergic interneurons in the cerebellum
(Biggio et al., 1977a,d; Mohler et al., 1981). A notable cGMP, a number of inhibitory influences appear to a
via inhibitory GABAergic interneurons in the cerebellu
(Biggio et al., 1977a,d; Mohler et al., 1981). A notab
exception to this is the depressant actions of ethan
that ar via inhibitory GABAergic interneurons in the cerebellum
(Biggio et al., 1977a,d; Mohler et al., 1981). A notable
exception to this is the depressant actions of ethanol
that are mediated by NMDA receptor antagonism (Hoff-
m iggio et al., 1977a,d; Mohler et al., 1981). A notable

ception to this is the depressant actions of ethanol

at are mediated by NMDA receptor antagonism (Hoff-

and et al., 1989a,b).

In summary, the neuronal activity of

exception to this is the depressant actions of ethanol
that are mediated by NMDA receptor antagonism (Hoff-
man et al., 1989a,b).
In summary, the neuronal activity of the cerebellum
involves a delicate balance between EAA that are mediated by NMDA receptor antagonism (Hoffman et al., 1989a,b).

In summary, the neuronal activity of the cerebellum

involves a delicate balance between EAA and GABAergic

neurons, both possessing extensive and d man et al., 1989a,b).
In summary, the neuronal activity of the cerebellu
involves a delicate balance between EAA and GABAerg
neurons, both possessing extensive and diverse synapt
inputs. The actions of these two major neur In summary, the neuronal activity of the cerebellum
involves a delicate balance between EAA and GABAergic
neurons, both possessing extensive and diverse synaptic
inputs. The actions of these two major neurotransmitter
syst involves a delicate balance between EAA and GABAer_i
neurons, both possessing extensive and diverse synap
inputs. The actions of these two major neurotransmitt
systems have been extensively characterized at the
ceptor lev neurons, both possessing extensive and diverse synaptinguts. The actions of these two major neurotransmit systems have been extensively characterized at the ceptor level, and as presented in this review, our knowedge of su ing. Systems have been extensively characterized at the re-
 Achos equent is and as presented in this review, our knowl-
 Acknowledgments. I thank my coworkers who have collaborated with
 Acknowledgments. I thank my cowor

me throughout 10 years in investigating second messenger function in

the cerebellum. These investigators included J. W. Richard, Dr. N. P.

V. Nair, H. S. Kim, D. J. Steel, Dr. C. A. Altar, Dr. B. Petrack, Dr. J. MUELLER, the cerebellum. These investigators included J. W. Richard, Dr. N. P. W. Nair, H. S. Kim, D. J. Steel, Dr. C. A. Altar, Dr. B. Petrack, Dr. J. Acknowledgments. I thank my coworkers who have collaborated with
me throughout 10 years in investigating second messenger function in
the cerebellum. These investigators included J. W. Richard, Dr. N. P.
V. Nair, H. S. Kim Acknowledgments. I thank my coworkers who have collaborated with me throughout 10 years in investigating second messenger function in the cerebellum. These investigators included J. W. Richard, Dr. N. P. V. Nair, H. S. Kim me through
the cerebell
V. Nair, H.
Lehmann, I
S. Iyengar.

REFERENCES

- Lehmann, Dr. T. S. Rao, J. A. Cler, M. R. Emmett, S. Mick, and Dr. 326, 1979b.

S. Iyengar.

S. INGUNAN, S.: Parmacol. S4: 18-1-184 REFERENCES

molecular layer of rat cerebellum. Eur. J. Pharmacol. 173: 113-114, 1989.

ALLEN, G. I., AND TSUKAHARA, N. T.: Cerebrocerebellar communication systems.

Physiol. Rev. 14: 957-1006, 1974.

ARIANO, M. A., LEWICKI
- molecular layer of rat cerebellum. Eur. J. Pharmacol.
LEN, G. I., AND TSUKAHARA, N. T.: Cerebrocerebella
Physiol. Rev. 14: 957-1006, 1974.
LIANO, M. A., LEWICKI, J. A., BRANDWEIN, H. J., A
histochemical localization of gua
- CGMP IN THE CEREBELLUM 21 CGMP IN THE CEREBELLUM
ASCHER, P., BREGESTOVSKI, P., AND NOWAK, L.: N-Methyl-D-aspartate-acti-

vated channels of mouse central neurones in magnesium-free solutions. J.

Physiol. 399: 207-226, 1988. REBELLUM

SCHER, P., BREGESTOVSKI, P., A

Vated channels of mouse centri

Physiol. 399: 207-226, 1988.

KEW, W. E., AND CHARALAMPO CGMP IN THE CEREBELLUM

ASCHER, P., BREGESTOVSKI, P., AND NOWAK, L.: N-Methyl-D-aspartate-acti-

vated channels of mouse central neurones in magnesium-free solutions. J.

Physiol. 399: 207-226, 1988.

ASKEW, W. E., AND CHA
	- vated channels of mouse central neurones in magnesium-free solutions. J.
Physiol. **399:** 207-226, 1988.
ASKEW, W. E., AND CHARALAMPOUS, K. D.: Effects of morphine administration
on cerebellar guanosine 3',5'-monophosphate.
	- Physiol. 399: 207–226, 1988.
KEW, W. E., AND CHARALAMPOUS, K. D.: Effects of morphine administration
on cerebellar guanosine 3',5'-monophosphate. Experientia (Basel) 32: 1454–
1456, 1976.
LABAN, C. D.: Central neurotoxic e on cerebellar guanosine 3',5'-monophosphate. Experientia (Basel) 32: 1454-1456, 1976.
BALABAN, C. D.: Central neurotoxic effects of intraperitoneally administered 3-acetylpyridine, harmaline and niacinamide in Sprague-Dawl 1456, 1976. **BALABAN, C. D.: Central neurotoxic effects of intraperitoneally administered 3** acetylpyridine, harmaline and niacinamide in Sprague-Dawley and Long-Evantas: a critical review of central 3-acetylpyridine neuro LABAN, C. D.: Central neurotoxic effects of intraperitoneally administered 3-
acetylpyridine, harmaline and niacinamide in Sprague-Dawley and Long-Evans
p: 21-42, 1985.
 θ : 21-42, 1985.
LLCAR, V. J., AND JOHNSTON, G. A.
	-
	- BALCAR, V. J., AND JOHNSTON, G. A. R.: High affinity uptake of transmitter
studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in the
BERTLINO, M., VICINI, S., MAZZETTA, J., AND COSTA, E.: Phencyclidine an

		- cat spinal cord. J. Neurochem. 20: 529-532, 1973.
BERTLINO, M., VICINI, S., MAZZETTA, J., AND COSTA, E.: Phencyclidine and
glycine modulate NMDA-activated high conductance cationic channels by
acting at different sites. Ne BERTLINO, M., VICINI, S., MAZZETTA, J., AND COSTA, E.: Phencyclidine and
glycine modulate NMDA-activated high conductance cationic channels by
acting at different sites. Neurosci. Lett. 84: 351-355, 1988.
BIGGIO, G., AND G BIGGIO, G., AND GUIDOTTI, A.: Climbing fiber activation and 3',5'-cyclic guanosine monophosphate (CGMP) content in cortex and deep nuclei of cerebellum.
Brain Res. 103: 365-373, 1976.
BIGGIO, G., AND GUIDOTTI, A.: Regulati
			-
			- Brain Res. 103: 365-373, 1976.
GGIO, G., AND GUIDOTTI, A.: Regulation of cyclic GMP in cerebellum by a
striatal dopaminergic mechanism. Nature (Lond.) 265: 240-242, 1977.
GGIO, G., COSTA, E., AND GUIDOTTI, A.: Regulation o
			- **BIGGIO, G., COSTA, E., AND GUIDOTTI, A.: Regulation of 3',5'-cyclic guanosine
monophosphate content in deep cerebellar nuclei. Neuroscience 2: 49-52,
1977a.
BIGGIO, G., GUIDOTTI, A., AND COSTA, E.: On the mechanism of the**
			- BIGGIO, G., COSTA, E., AND GUIDOTTI, A.: Regulation of 3',5'-cyclic guanosine
monophosphate content in deep cerebellar nuclei. Neuroscience 2: 49-52,
1977a.
BIGGIO, G., GUIDOTTI, A., AND COSTA, E.: On the mechanism of the in the $3',5'$ -cyclic guanosine monophosphate content of rat cerebellar cortex:
difference between apomorphine, haloperidol and harmaline. J. Pharmacol.
Exp. Ther. 200: $207-215$, 1977c.
BIGGIO, G., BRODIE, B. B., COSTA, E
			-
			- difference between apomorphine, haloperidol and harmaline. J. Pharmacol.
Exp. Ther. 200: 207-215, 1977c.
BIGGIO, G., BRODIE, B. B., COSTA, E., AND GUIDOTTI, A.: Mechanisms by which
diazepam, muscimol, and other drugs chang BIGGIO, G., BRODIE, B. B., COSTA, E., AND GUIDOTTI, A.: Mechanisms by which diazepam, muscimol, and other drugs change the content of cGMP in cerebellar cortex. Proc. Natl. Acad. Sci. USA 74: 3592-3596, 1977d. BIGGIO, G., tesion of dopaminergic target cells in the striatum: consequences of the dynamics of cerebellar CGMP. Naunyn Schmiedebergs Arch. Pharmacol. 304: 5-1978a.
1978a.
CGIO, G., CORDA, M. G., CASU, M., AND GESSA, G. L.: Effect of
			- ics of cerebellar cGMP. Naunyn Schmiedebergs Arch. Pharmacol. 304: 5-7, 1978a.

			BIGGIO, G., CORDA, M. G., CASU, M., AND GESSA, G. L.: Effect of chronic treatment with neuroleptics on the content of 3',5'-cyclic guanosine m
			-
			- BIGGIO, G., CORDA, M. G., CASU, M., AND GESSA, G. L.: Effect of chronic
treatment with neuroleptics on the content of 3',5'-cyclic guanosine mono-
phosphate in cerebellar cortex of rats. Life Sci. 23: 649-652, 1978b.
BIGGI in cerebellum by intrastriatal d-Ala2-Met-enkephalinamide. Life Sci. 23: 335-340, 1978c.
BIGGIO, G., CORDA, M. G., CASU, M., SALIS, M., AND GESSA, G. L.: Disappear-
ance of cerebellar cGMP induced by kainic acid. Brain Res
			- GGIO, G., CORDA, M. G., CASU, M., SALIS, M., AND GESSA, G. L.: Disappear-
ance of cerebellar cGMP induced by kainic acid. Brain Res. 154: 203–208,
1978d.
RCH, P. J., GROSSMAN, C. J., AND HAYES, A. G.: 6,7-Dinitro-quinoxali ance of cerebellar cGMP induced by kainic acid. Brain Res. 154: 203-208, 1978d.
1978d.
RCH, P. J., GROSSMAN, C. J., AND HAYES, A. G.: 6,7-Dinitro-quinoxaline-2,3-
dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise re 1978d.

			1978d.

			RIRCH, P. J., GROSSMAN, C. J., AND HAYES, A. G.: 6,7-Dinitro-quinoxaline-2,3-

			dion and 6-nitro,7-cyano-quinoxaline-2,3-dion antagonise responses to NMDA

			in the rat spinal cord via an action at the strychn Biocolo, G., Conva, K. G., Resultation of $3/5$. Consider and the cerebellum comphosphate content in deep cerebellar nuclei. Neuroscience 2: 49-52,
1977a.

			1977a.

			1977a.

			1977a.

			1977a.

			1977a. G., GUUDOTTI, A., AND COS
			- in the rat spinal cord via an action at the strychnine-insensitive glycine receptor. Eur. J. Pharmacol. 156: 177–180, 1988.
BLOOM, F. E., HOFFER, B. J., AND SIGGINS, G. R.: Studies on norepinephrine-containing afferents to
			- receptor. Eur. J. Pharmacol. 156: 177-180, 1988.

			LOOM, F. E., HOFFER, B. J., AND SIGGINS, G. R.: Studies on norepinephrine-

			containing afferents to Purkinje cells of rat cerebellum. I. Localization of fibers

			and their s and their synapses. Brain Res. 25: 501-521, 1971.

			BONTA, I. L., DEVOS, C. J., GRIJSEN, C. J., HILLEN, F. C., NOACH, E. L., AND

			SIM, A. W.: 1-Hydroxy-3-aminopyrrloidone-2 (HA-966): a new GABA-like

			compound, with potentia
			- 86: 9030-9033, 1989.
			- calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87: 682-685, 1990.
			- BREESE, G. R., MAILMAN, R. B., ONDRUSEK, M. G., HARDEN, T. K., AND
			- ennacement of CoMP levels in the cerebelum. Proc. Natl. Acad. Sci. USA

			BREDT, D. S., AND SYNDER, S. H.: Isolation of nitric oxide synthetase, a

			calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. USA 87: 682-685, 1990.

			- guanosine 3':5'-monophosphate (CGMP) changes in cerebellum to behavior. J.
Pharmacol. Exp. Ther. 2009: 262-270. 1979a.
BREESE, G. R., LUNDBERG, D. B. A., MAILMAN, R. B., FRVE, G. D., AND
MUELLER, R. A.: Effect of ethanol o MUELLER, R. A.: Effect of ethanol on cyclic nucleotides in vivo: consequences
of controlling motor and respiratory changes. Drug Alcohol Depend. 4: 321-
326, 1979b.
BRILEY, P. A., KOUYOUMDJIAN, J. C., HAIDAMOUS, M., AND GO
			-
			- RILEY, P. A., KOUYOUMDJIAN, J. C., HAIDAMOUS, M., AND GONNARD, P.:
Effect of L-glutamate and kainate on rat cerebellar cGMP levels in vivo. Eur.
J. Pharmacol. 84: 181-184, 1979.
acockes, N., AND WERMAN, R.: The cooperativi **BUNN, S. J., AND WERMAN, R.: The cooperativity of gamma-aminobutyric acid action on the membrane of locust muscle fibers. Mol. Pharmacol. 9: 571-579, 1973.
BUNN, S. J., GARTHWAITE, J., AND WATKIN, G. P.: Guanylate cyclase**
			- in enriched preparations of neurones, astroglia and synaptic acides of neuron on the membrane of locust muscle fibers. Mol. Pharmacol. 9: 571–579, 1973.
1973.
JNN, S. J., GARTHWAITE, J., AND WATKIN, G. P.: Guanylate cyclas HUNN, S. J., GARTHWAITE, J., AND WATKIN, G. P.: Guanylate cyclase activities
in enriched preparations of neurones, astroglia and synaptic complex isolated
from rat cerebellum. Neurochem. Int. 8: 179-185, 1986.
BURKARD, W.
			-

Downloaded from pharmrev.aspetjournals.org at Thammasart University on December 8, 2012

ARMACOLOGI

spet

 $\, \mathbb G \,$

3',5'-cyclic phosphate in rat cerebellum by dopaminergic mechanisms. J. Neu-

- $3'.5'.$ cyclic phosphate in rat cerebellum by dopaminergic mechanisms. J. Neurochemn. $37:297-298,1976$.
BURKARD, W. P., BONETTI, E. P., AND HAEFELY, W.: The benzodiazepine
antagonist RO 15-1788 reverses the effect of meth
-
- 3', D'-cyclic phosphate in rat cerebellum by dopaminergic mechanisms. J. Neu-

rochem. 27: 297-298, 1976.

BURKARD, W. P., BONETTI, E. P., AND HAEFELY, W.: The benzodiazepine

antagonist RO 15-1788 reverses the effect of m CARTER, C., BENAVIDES, J., LEGENDRE, P., VINCENT, J. D., NOEL, F., THURET, F., LLOYD, K. G., ARBILLA, S., ZIVKOVIC, B., MACKENZIE, E. T., SCATTON, B., AND LANGER, S. Z.: Ifenprodil and SL 82.0715 as cerebral anti-ischemic CARTER, C., BENAVIDES, J.., LEGENDRE, P., VINCENT, J. D., NOEL, F., THURET,
F., LLOYD, K. G., ARBILLA, S., ZIVKOVIC, B., MACKENZIE, E. T., SCATTON,
B., AND LANGER, S. Z.: Ifenprodil and SL 82.0715 as cerebral anti-ischemic
- **the result of the N-methyl-D-aspartate (NMDA) recep.**

CARTER, C., RIVY, J.-P., AND SCATTON, B.: Ifenprodil and SL 82.0715 are
 chan-Rangonists at the polyamine site of the N-methyl-D-aspartate (NMDA) recep.

CHAN-RAN-B **GMP:** G., RIVY, J.-P., AND SCATTON, B.: Ifenprodil and SL 82.0715 are antagonists at the polyamine site of the N-methyl-D-aspartate (NMDA) receptor. Eq. 1. J. A. AND PALAY, S. L.: Immunocytochemical localization of cyclic
- antagonista at the polymone are of the N-methyl-D-aspartate (NMDA) recep-
tor. Bur. J. Pharmacol. 164: 611-612, 1989.
CHAN-PALAY, V., AND PALAY, S. L.: Immunocytochemical localization of cyclic
GMP: light and electron micr
-
-
- CORDA, M. G., G., USA CORDA, M. G., BIGGIO, G., AND GE88A, G. L.: Brain nucleotides is naive and the CARD of ALGA CORDA, M. G., CASU, M., AND BIGGIO, G.: Decrease of cyclic GMP in cerebellar contex by intrastriatal (--)sul Hund, E.: Cerebellar cyclic GMP in p.p⁷-DDT myoclonus: effects of antimy-clonic agents. Res. Commun. Chem. Pathol. Pharmacol. 40: 87-98, 1983.
DRDA, M. G., CASU, M., AND BIGGIO, G.: Decrease of cyclic GMP in cerebellar
c
- CORDA, M. G., CASU, M., AND BIGGIO, G.: Decrease of cyclic GMP in cerebellar cortex by intrastriatal (--)sulpiride. Eur. J. Pharmacol. 55: 327-330, 1979. CORDA, M. G., BIGGIO, G., AND GESSA, G. L.: Brain nucleotides in nai **of the Collgium International Neuropsychopharmacology, beam**
Costa, E., Gumorri, A., AND MAO, C. C.: Diazepam, cyclic nucleotides and
animo acid neurotransmitters in rat cerebellum. In Proceeding of the IXth
congress of **in the action of the Collgium International Neuropeychopharmacology, pp. 849-856, 1974.**
COSTA, E., GUIDOTTI, A., AND MAO, C. C.: Evidence for involvement of GABA in the action of benzodiazepines: studies on rat cerebellu
- congress of the Collgium International Neuropsychopharmacology, pp. 849-856, 1974.
COSTA, E., GUIDOTTI, A., AND MAO, C. C.: Evidence for involvement of GABA
in the action of benzodiazepines: studies on rat cerebellum. Adv.
-
- In the action of benzodiasepines: studies on rat cerebelium. Adv. Biochem.

Psychopharmacol. 14: 113-130, 1975.

COTMAN, C. W., MONAGHAN, D. T., OTTERSEN, O. P., AND STORM-MATHISEN,

J.: Anatomical organization of excitato
-
-
- Nucleotide Res. 5: 463-467, 1979.
CEUCEWAR, S. J., AND MELDRUM, B.: Protection against chemically induced
eizures by 2-amino-7-phosphonoheptanoic acid. Eur. J. Pharmacol. 83: 335-
338, 1982.
DANY82, W., WROBLEWESKI, J. T., DANYSZ, W., WROBLEWESKI, J. T., BROOKER, G., AND COSTA, E.: Modulation

of glutamate receptors by phencyclidine and glycine in the rat cerebellum:

cGMP increase in vivo. Brain Res. 479: 270-276, 1989.

DE VENTE, J., BOL, of giutamate receptors by phencyclidne and given and excepted in the carebellum:

CGMP increase in vivo. Brain Res. 479: 270-276, 1989.

DE VENTE, J., BOL, J. G. J. M., AND STEINBUSCH, H. W. M.: Localization of

CGMP in th
-
- CGMP in the cerebellum of the adult rat: an immunohistochemical study. Brain
Res. 504: 332-337, 1989.
DINNENDAHL, V.: Effects of stress on mouse brain cyclic nucleotide levels in
vivo. Brain Res. 100: 716-719, 1975.
DINNE vivo. Brain Res. 100: 716-719, 1975.
INNENDAHL, V., AND GUMULKA, S. W.: Stress-induced alterations of cyclic
nucleotide levels in brain: effects of centrally acting drugs. Psychopharmacology
52: 243-249, 1977.
INNENDAHL, V DINNENDAHL, V.: Effects of stress on mouse brain cyclic nucleotide levels i
vivo. Brain Res. 100: 716–719, 1975.
DINNENDAHL, V., AND GUMULKA, S. W.: Stress-induced alterations of cycline
methodide levels in brain: effects
- vivo. Brain Res. 100: 716–719, 1975.

INNENDAHL, V., AND GUMULKA, S. W.: Stress-induced alterations of cyclic

nucleotide levels in brain: effects of centrally acting drugs. Psychopharmacology
 62: 243–249, 1977.

INNEND **32:** 243-249, 1977.
 **DINNENDAHL, V., AND STOCK, K.: Effects of arecoline and cholinesterase inhibitiors on cyclic guanosine 3',5'-monophosphate and adenosine 3',5'-monophos-

phate in mouse brain. Naunyn Schmiedebergs Ar**
- ntors on cyclic guanosine 3',5'-monophosphate and adenosine 3',5'-monophos-
phate in mouse brain. Naunyn Schmiedebergs Arch. Pharmacol. 290: 297-306, 1975.
0DSON, R. A., AND JOHNSON, W. E.: Effect of ethanol, arecoline, at
- itors on cyclic guanoaine 3° ,5'-monophosphate and adenosine 3° ,5'-monophos-

phate in mouse brain. Naunyn Schmiedebergs Arch. Pharmacol. 290: 297-

306, 1975.

DODBON, R. A., AND JOHNSON, W. E.: Effect of ethano **DOBSON, R. A., AND JOHNSON, W. E.: Effects of general central nervous system**
 DODSON, R. A., AND JOHNSON, W. E.: Effects of general central nervous system
 COMULKA, S. W., DINNENDAHL, V., PETERS, H. D., AND SCHONHOPPE
- depressents with and without calcium ionophore A23187 on rat cerebellar cyclic

guanosine 3',5'-monophosphate. Res. Commun. Chem. Pathol. Pharmacol. 29:

265-280, 1980.

DODSON, R. A., SCHMIDTT, F. R., AND JOHNSON, W. E.:
-
- Commun. Chem. Pathol. Pharmacol. 25: 403-406, 1979.

DREJER, J., AND SCHOUSBOE, A.: Selection of a pure cerebellar granule cell

culture by kainate treatment. Neurochem. Res. 14: 751-754, 1989.

DREJER, J., LARRSON, O. M., DREJER, J., LARRSON, O. M., AND SCHOUSBOE, A.: Characterisation of uptake HAIDA
and release processes for D- and L-aspartate in primary cultures of astrocytes vivo
and cerebellar granule cells. Neurochem. Res. 8: 231-243,
- **EMMETT, J. L., FOURNIER, E., GARDETTE, R., AND CREPEL, F.: Effect of** excitatory amino acids on Purkinje cell dendrites in cerebellar slices from normal and staggerer mice. Neuroacience 12: 613-619, 1984.
EAST, S. M., AND
-
- EAST, S. M., AND DUTTON, G. R.: The development of GABA receptors in normal
and mutant mouse cerebellum. FEBS Lett. 23: 301-311, 1981.
EMMETT, M. R., WOOD, P. L., MICK, S. J., CLER, J. A., RAO, T. S., AND IYENGAR,
S. D-C
- MMETT, M. R., WOOD, P. L., MICK, S. J., CLER, J. A., RAO, T. S., AND IYENGAR, HOS.

S. D-Cycloserine: a partial agonist at the N-methyl-D-aspartate-associated of

glycine receptor site in vivo. Neuropharmacology, in press,
- FERKO, A. P., BOBYCOCK, E., AND CHERNICK, W. S.: Regional rat brain content of adenosine 3',5'-cyclic monophosphate and guanosine monophosphate after ERKO, A. P., BOBYCOCK, E., AND CHERNICK, W. S.: Regional rat brain content
of adenosine 3',5'-cyclic monophosphate and guanosine monophosphate after
acute and subacute treatment with ethanol. Toxicol. Appl. Pharmacol. 64:
 FERRO, A. P., BOBYCOCK, E., AND CHERNICK, W. S.: Regional rat brain content
of adenosine 3',5'-cyclic monophosphate and guanosine monophosphate after
447-455, 1982.
447-455, 1982.
FERRENDELLI, J. A., AND KINSCHERF, D. A.:
- 447–455, 1982.

FERRENDELLI, J. A., AND KINSCHERF, D. A.: Cyclic nucleotides in epileptic brain:

effects of pentylenetetrazol on regional cyclic AMP and cyclic GMP levels in

vivo. Epilepsia 18: 525–530, 1977.

FERRENDEL **FERRENDELLI,** J. A., AND KINSCHERF, D. A.; Cyclic nucleotides in epileptic brain:

effects of pentylenetetrazol on regional cyclic AMP and cyclic GMP levels in

vivo. Epilepsis 18: 525-530, 1977.

FERRENDELLI, J. A., KINS
- vivo. Epilepsia 18: 525–530, 1977.

FERRENDELLI, J. A., KINSCHERF, D. A., AND CHANG, M. M.: Regulation of levels

of guanosine cyclic 3',5'-monophosphate in the central nervous system: effects

of depolarizing agents. Mol
- **ofdepolarizing** agents. **Mol. Pharmacol. 9:** 445-454, 1973. **FERRENDELLI, J. A., BLANK, A. C., AND GROSS,** R. A.: Relationships between
- The effect of oxotremorine and atropine on cGMP levels in mouse cerebral cortex and cerebellum. Biochem. Biophys. Res. Commun. 41: 1061–1067, 1970.
-
- Eur. J. Pharmacol. 80: 259–262, 1982.
ALLO, V., CIOTTI, M. T., COLETTI, A., ALOISI, F., AND LEVI, G.: Selective
release of glutamate from cerebellar granule cells differentiating in culture. COTER ALLO, V., KAWASAKI, K., MATSUSHITTA, A., AND OKABAYASHI, T.: Ethyl-f-

GALLO, V., KAWASAKI, K., MATSUSHITTA, A., AND OKABAYASHI, T.: Ethyl-f-

Eur. J. Pharmacol. 80: 259-262, 1982.

GALLO, V., CIOTTI, M. T., COLETTI, carboline-3-carboxylate reverses the diazepam effect on cerebellar cyclic GMP.
Eur. J. Pharmacol. 80: 259-262, 1982.
GALLO, V., CIOTTI, M. T., COLETTI, A., ALOISI, F., AND LEVI, G.: Selective
release of glutamate from cere
- monophosphate in incubated slices of immature and adult cerebellum. Neuro-
science 7: 2491-2497, 1982.
GARTHWAITE, J., AND BRODBELT, A. R.: Synaptic activation of N-methyl-D-UALLO, V., CIUTTI, M. I., COLETTI, A., ALOBSI, P., AND LEVI, G.: Selective
release of glutamate from cerebellar granule cells differentiating in culture.
Proc. Natl. Acad. Sci. USA. 79: 7919-7923, 1982.
GARTHWAITE, J.: Exc
-
- ecience 7: 2491-2497, 1982.

NETHWAITE, J., AND BRODBELT, A. R.: Synaptic activation of N-methyl-D-

aspartate and non-N-methyl-D-aspartate receptors in the mossy fibre pathway

in adult and immature rat cerebellar slices. 48: 29-39, 1987.
-
- in adult and immature rat cerebellar slices. Neuroscience 29: 401-412, 1989.
GARTHWAITE, J., AND GARTHWAITE, G.: Cellular origins of cyclic GMP responses
to excitatory amino acid receptor agonists in rat cerebellum. J. Neu SARTHWAITE, J., CHARLES, S. L., AND CHESS-WILLIAMS, K.: Endotheium-
derived relaxing factor release on activation of NMDA receptors suggests role
as intercellular messenger in the brain. Nature (Lond.) 336: 385-388, 1988.
 GARTHWAITE, J., GARTHWAITE, G., PALMER, R. M. J., AND MONCADA, S.: NMDA
receptor activation induces nitric oxide synthesis from arginine in rat brain
slices. Eur. J. Pharmacol. 172: 413-416, 1989a.
GARTHWAITE, J., SOUTHAM,
-
- receptor activation induces nitric oxide synthesis from arginine in rat brain
slices. Eur. J. Pharmacol. 172: 413-416, 1989a.
GARTHWAITE, J., SOUTHAM, E., AND ANDERTON, M.: A kainate receptor, linked
to nitric oxide synthe to nitric oxide synthesis from arginine. J. Neurochem. 53: 1952–1954, 1989b.

DODMAN, R. R., AND SNYDER, S. H.: Autoradiographic localization of adenosine

receptors: in rat brain using [³H]cyclohexyladenosine. J. Neuros GOODMAN, R. R., AND SNYDER, S. H.: Autoradiographic localization of adenosine
receptors in rat brain using [³H]cyclohexyladenosine. J. Neurosci. 2: 1230-
1241, 1982.
GOODMAN, R. R., KUHAR, M. J., HESTER, L., AND SNYDER,
-
- 1241, 1982.
OODMAN, R. R., KUHAR, M. J., HESTER, L., AND SNYDER, S. H.: Adenosi
receptors: autoradiographic evidence for their location on axon terminals
excitatory neurons. Science (Weah. DC) 220: 967-969, 1983.
DRDON, R. GOODMAN, R. R., KUHAR, M. J., HESTER, L., AND SNYDER, S. H.: Adenosine
receptors: autoradiographic evidence for their location on axon terminals of
excitatory neurons. Science (Wash. DC) 220: 967-969, 1983.
GORDON, R. D., GORDON, K. D., AND BALAZS, K.: Characterization of separated cell types from
the developing rat cerebellum: transport of glutamate and aspartate by prepa-
rations enriched in Purkinje cells, granule neurons and astrocytes.
- the developing rat cerebellum: transport of glutamate and aspartate by preparions enriched in Purkinje cells, granule neurons and astrocytes. J. Neuro-1099, 1983.

chem. 40: 1090-1099, 1983.

DVONI, S., FRESIA, P., SPANO,
- chem. 40: 1090–1099, 1983.

2000-1099, 1983. P., SPANO, P. F., AND TRABUCCHI, M.: Effect of de

thyldiazepam and chlordenethyldiazepam on 3',5'-cyclic guanosine n

phosphate levels in rat cerebellum. Psychopharmacology 50: phosphate levels in rat cerebellum. Psychopharmacology 50: 241-244, 1976.
GREENBERG, L. H., TROYER, E., FERRENDELLI, J. A., AND WEISS, B.: Enzymatic regulation of the concentration of cyclic GMP in mouse brain. Neuropharma
- GRENBERG, L. H., TROYER, E., FERRENDELLI, J. A., AND WEISS, B.: Enzymatic
regulation of the concentration of cyclic GMP in mouse brain. Neuropharma-
cology 17: 737-745, 1978.
GUIDOTTI, A., CHENEY, D. L., TRABUCCHI, M., DOT GUIDOTTI, A., CHENEY, D. L., TRABUCCHI, M., DOTEUCHI, M., WANG, C., AND

HAWKINS, R. A.: Focussed microwave radiation: a technique to minimize post-

mortem changes of cyclic nucleotides, DOPA and choline and to preserve b
-
- Incording and the increase of cGMP content in cerebellar cortex elicharmaline. Brain Res. 96: 201–205, 1975.
IMULKA, S. W., DINNENDAHL, V., PETERS, H. D., AND SCHONHOFFERE Effects of dopaminergic stimulants on cyclic nucle CHARMING COMPART CONSULTER, H. D., AND SCHONHOFFER, Effects of dopaminergic stimulants on cyclic nucleotide levels in mouse
in vivo. Naunyn Schmiedebergs Arch. Pharmacol. 293: 75-80, 1976.
UMULKA, S. W., DINNENDAHL, V., AN
-
- GUMULKA, S. W., DINNENDAHL, V., AND SCHONHOFER, P. S.: Baclofen and
cerebellar cyclic GMP levels in mice. Pharmacology 19: 75-81, 1979a.
GUMULKA, S. W., DINNENDAHL, V., AND SCHONHOFER, P. S.: The effect of
nalozone on cere GUMULKA, S. W., DINNENDAHL, V., AND SCHONHOFER, P. S.: The effect of
naloxone on cerebellar cGMP content. A possible GABA-antagonist action?
Naunya Schmiedeberga Arch. Pharmacol. 306: 169-172, 1979b.
HAIDAMOUS, M., KOUYOUM
- HAIDAMOUS, M., KOUYOUMDJIAN, T. C., BRILEY, P. A., AND GONNARD, P.: In
vivo effects of noradrenaline and noradrenergic receptor agonists and antago-
nists on rat cerebellar cyclic GMP levls. Eur. J. Pharmacol. 63: 287-294,
-
- vivo effects of noradrenaline and noradrenergic receptor agonists and antagonists on rat cerebellar cyclic GMP levls. Eur. J. Pharmacol. 63: 287–294, 1980.

HATTEN, M. E., LIEM, R. H., AND MASON, C. A.: Two forms of cerebe production. J. Neurochem. The street of noradrenaine and noradrenergic receptor agonists and antago-
histram. J. Pharmacol. 63: 287-294, 1980.
HATTEN, M. E., LIEM, R. H., AND MASON, C. A.: Two forms of cerebellar gial
cell Collis interact differently with neurons in vitro. J. Cell Biol. 98: 193–204, 198
 **OFFMAN, P. L., RABE, C. S., MOSES, F., AND TABAKOFF, B.: N-methyl-lapproduction. J. Neurochem. 52: 1937–1940, 1989a.

production. J. Neuro**
-
- HOFFMAN, P. L., RABE, C. S., MOSES, F., AND TABAKOFF, B.: N-methyl-D-
aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP
production. J. Neurochem. 52: 1937-1940, 1989a.
HOFFMAN, P. L., MOSES, F., AN
-

CGMP IN THE CEREBELLUM
depletion of cerebellar guanosine-3',5'-monophosphate and stimulation of agonist on cycli
striatal dopamine release. J. Stud. Alcohol 40: 401-407, 1979. macol. 29: 827-

- CGMP IN THE
depletion of cerebellar guanosine-3',5'-monophosphate and stimulation of
striatal dopamine release. J. Stud. Alcohol 40: 401-407, 1979.
IYENGAR, S., HAUSER, A., KIM, H. S., MARIEN, M., ALTAR, C. A., AND WOOD,
 depletion of cerebellar guanosine-3',5'-monophosphate and stimulation of striatal dopamine release. J. Stud. Alcohol 40: 401-407, 1979.
IYENGAR, S., HAUSER, A., KIM, H. S., MARIEN, M., ALTAR, C. A., AND WOOD, M.
P. L.: The
-
- cology 28: 27-31, 1989.
JOHNSON, J. W., AND ARCHER, P.: Glycine potentiates the NMDA response in
cultured mouse brain neurons. Nature (Lond.) 325: 529-531, 1987.
JoNES, D. J., AND STAVINOHA, W. B.: Levels of cyclic nucleot modulates striatal dopamine metabolism and prolactin release. Neuropharma-
cology 28: 27-31, 1989.
HNMSON, J. W., AND ARCHER, P.: Glycine potentiates the NMDA response in
cultured mouse brain neurons. Nature (Lond.) 326: 5 **KAGEYAMA, H., AND STAVINOHA, W. B.: Levels of cyclic nucleotides in mouse regional brain following 300 ms microwave inactivation. J. Neurochem. 28:
T69-763, 1977.
KAGEYAMA, H., AND KUROSAWA, A.: Long-lasting inhibitory ac**
- 991-995, 1989. TO9-763, 1977.
KAGEYAMA, H., AND KUROSAWA, A.: Long-lasting inhibitory action of caerulein
on climbing fiber system in the cerebellum of the rat. Neuropharmacology 28:
991–995, 1989.
KANT, G. J., MULLER, T. W., LENOX, R. H
- F69–763, 1977.

MGEYAMA, H., AND KUROSAWA, A.: Long-lasting inhibitory action of caerulein

on climbing fiber system in the cerebellum of the rat. Neuropharmacology 28:

291–936, 1989.

MT, G. J., MULLER, T. W., LENOX, R. pharmacology 28: 091-995, 1989. However in the cerebellum of the rat. Neuropharmacology 28: 291-995, 1989.

WaNT, G. J., MULLER, T. W., LENOX, R. H., AND MEYERHOFF, J. L.: In vivo

effects of pentobarbital and halothane an effects of pentobarbital and halothane anesthesia on levels of adenosine 3',5'-
monophosphate and guanosine 3',5'-monophosphate in rat brain regions and
pituitary. Biochem. Pharmacol. 29: 1891–1896, 1980.
KATO, K., AND FUK
-
- pituitary. Biochem. Pharmacol. 29: 1891–1896, 1980.
Aro, K., AND FUKUDA, H.: Reduction of GABA(b) receptor binding induced by
climbing fiber degeneration in the rat cerebellum. Life Sci. 37: 279–288, 1985.
ATSUKI, S., ARNO MATU, A., AND FUCLUM, H.: **I. GUATRAVAS, I.: I. FACTRAVAS, A.** AND MURAD, F.: Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various preparations and comparison to the effects o cyclase by sodium nitre
preparations and comparations and comparations and performed and performed and performed and performed and 25.
25: 2543-2546, 1976.
235: 2543-2546, 1976.
258LER, M., BAUDRY, M.
- **KESSLER, M., AND LYNCH,** G.: Quinoxaline derivatives and comparison to the effects of sodium azide and hydroxylamine.
 KATZ, J., AND CATRAVAS, G. N.: Cerebellar cGMP levels reduced by morphine and pentobarbital on a dos J. Cyclic Nucleotide Res. 3: 23–35, 1977.

ATZ, J., AND CATRAVAS, G. N.: Cerebellar cGMP levels reduced by morphine

and pentobarbital on a dose-and time-dependent basis. Biochem. Pharmacol.

25: 2543–2546, 1976.

25: 2543 489: 377-382, 1989. AND MURAD, F.: Cerebellar cGMP levels reduced by morphine and pentobarbital on a does- and time-dependent basis. Biochem. Pharmacol.
 25: 2543-2546, 1976.
 KESSLER, M., BAUDRY, M., AND LYNCH, G.: Qui
- **25:** 2543-2546, 1976.
 **KESSLER, M., BAUDRY, M., AND LYNCH, G.: Quinoxaline derivatives are high affinity antagonists of the NMDA receptor-associated glycine sites. Brain Res 489: 377-382, 1989.

KENURA, H., THOMAS, E.,**
-
- murk, H., THOMAS, E., AND MURAD, F.: Eriects of decapitation, ether, and
pentobarbital on guanosine 3',5'-monophosphate and adenosine 3',5'-mono-
phosphate levels in rat tissues. Biochim. Biophys. Acta 343: 519-528, 1974.
 pentobarbital on guanosine 3',5'-monophosphate and adenosine 3',5'-mono-
phophase lavels in rat tissues. Biochim. Biophys. Acta 343: 519-528, 1974.
Kos, B. K., AND LEBEL, L. A.: Contrasting effects of ethyl beta-carbonic e carboxylate (beta-CCE) and diazepam on cerebellar cyclic GMP content and antagonism of both effects by RO 15-1788, a specific benodiazepine receptor blocker. Eur. J. Pharmacol. 90: 37-102, 1983. M.: MWARER, Y., DEMONTGNY,
- carboxylate (beta-CCE) and diazepam on cerebellar cyclic GMP content and
antagonism of both effects by RO 15-1788, a specific benodiazepine receptor
blocker. Eur. J. Pharmacol. 90: 97-102, 1983.
LAMARRE, Y., DEMONYIGNY, C.
-
- Res. 32: 246-250, 1971.

LANE, S. J., AND MORGAN, W. W.: The effects of chronic oral administration of

barbital on cerebellar cyclic GMP. Neuropharmacology 23: 779–783, 1984.

LAUTIE, J. P., KOUYOUMDJIAN, J. C., HAIDAMOUS **complex and PCP recognition sites.** *In* Sigma- and PCP-like Compounds and PCP-like Compounds as Compounds and PCP-like Complex and PCP-like Compounds as *In* Sigma- and PCP-like Compounds as *INDORP recognition sites.*
-
- cerebellar cyclic GMP levels. J. Neurochem. 37: 801-803, 1981.

EHMANN, J., AND WOOD, P. L.: Interactions between the NMDA-type receptor

complex and PCP recognition sites. In Sigma- and PCP-like Compounds as

Molecular Pr
- LEHMANN, J., SCHNEIDER, J., MCPHERSON, S., MURPHY, D. E., BERNARD, P., TSAI, C., BENNETT, D. A., PASTOR, G., STEEL, D. J., BOEHM, C., CHENEY, D. L., LIEBMAN, J. M., WILLIAMS, M., AND WOOD, P. L.: CPP, a selective N-Molecular Probes in Biology, pp. 251–258, NPP Books, Ann Arbor, MI, 1988.
EHMANN, J., MCPHERSON, S. E., WOOD, P. L., AND CHENEY, D. L.: PCP
analogs—site of action at NMDA-type receptor associated ion channels? Clin.
Neurop analogs—alte of action at NMDA-type receptor associated ion channels? Clin.
Neuropharmacol. 9: 497–499, 1986.
HMANN, J., SCHNEIDER, J., MCPHERSON, S., MURPHY, D. E., BERNARD, P.,
TSAI, C., BENNETT, D. A., PASTOR, G., STEEL LEHMANN, J., SCHNEIDER, J., MCPHERSON, S., MURPHY, D. E., BERNARD, P., TSAI, C., BENNARD, P., T., BORHM, C., CHENEY, D. ME

L., LIRBMAN, J. M., WILLIAMS, M., AND WOOD, P. L.: CPP, a selective N. 1

L., LIRBMAN, J. M., WILL ISAI, C., BENNAN, J., C., FASTOR, M., THEEL, D., DOENM, C., CHENE, D., L., HENMANN, J., CHAPMAN, A. G., MELDRUM, B. S., HUTCHISON, A., TSAI, C., AND WOOD, P. L.: CGS 19765 is a potent and competitive antagonist at NMDA-typ
-
- Iro and in vivo. J. Pharmacol. Exp. Ther. 240: 737-746, 1987.

SHMANN, J., CHAPMAN, A. G., MELDRUM, B. S., HUTCHISON, A., TSAI, C., AND

WOOD, P. L.: CGS 19755 is a potent and competitive antagonist at NMDA-

type receptor type receptors. Eur. J. Pharmacol. 154: 89-93, 1988a.
EHMANN, J., HUTCHISON, A. J., MCPHERSON, S. E., MONDADORI, C.
SCHMUTZ, M., SINYON, C. M., TBAI, C., MURPHY, D. E., STEEL, D.
WILLIAMS, M., CHENEY, D. L., AND WOOD, P. L LEHMANN, J., HUTCHISON, A. J., MCPHERSON, S. E., MONDADORI, C., SCHMUTZ, M., SINTON, C. M., TSAI, C., MURPHY, D. E., STEEL, D. J., WILLIAMS, M., CHENEY, D. L., AND WOOD, P. L.: CGS 19755, a selective and competitive N-meth WILLIAMS, M., CHENEY, D. L., AND WOOD, P. L.: CGS 19755, a selective and
competitive N-methyl-D-aspartate-type excitatory amino acid receptor antag-
onist. J. Pharmacol. Exp. Ther. 246: 65-75, 1988b.
LEVI, G., ALOISI, F.,
- competitive N-methyl-D-aspartate-type excitatory amino acid receptor antagonist. J. Pharmacol. Exp. Ther. 246: 65-75, 1988b.

LEVI, G., ALOISI, F., CIOTTI, M. T., AND GALLO, V.: Autoradiographic localization and depolariza
- **Decreased cerebellar 3',5'-cyclic monophosphate levels** and insensitivity to
- and depolarization-induced release of acidic amino acids in differentiating Werebellar granule cell cultures. Brain Res. 290: 77-86, 1984. acc.

LORDEN, J. F., OLTMANS, G. A., MCKEON, T. W., LUTES, J., AND BEALES, M.: leve
-
- LORDEN, J. F., OLTMANS, G. A., MCKEON, T. W., LUTES, J., AND BEALES, M.:

Decreased cerebellar 3',5'-cyclic monophosphate levels and insensitivity to

harmaline in the genetically dystonic rat (dt.). Neurosci. 5: 2618-2625 murine brain: the temporal relationship of changes induced in adenosine 3',5'-
monophosphate following maximal elec-
monophosphate and guanosine 3',5'-monophosphate following maximal elec-
troshock or decapitation. J. Neur
-

CGMP IN THE CEREBELLUM 23 REBELLUM
agonist on cyclic guanosine monophosphate in rat cerebellum. Biochem. Phar-
macol. 29: 827–828. 1980.

- EREBELLUM

agonist on cyclic guanosine monophosphate in rat cerebellum. Biochem. Phar-

macol. 29: 827-828, 1980.

MAILMAN, R. B., MUELLER, R. A., AND BREESE, G. R.: The effect of drugs,

which alter GABA-ergic function on agonist on cyclic guanosine monophosphate in rat cerebellum. Biochem. Pharmacol. 29: 827-628, 1980.
MAILMAN, R. B., MUELLER, R. A., AND BREESE, G. R.: The effect of drugs, which alter GABA-ergic function on cerebellar guan
- which alter GABA-ergic function on cerebellar guanosine-3',5'-monophosphate
content. Life Sci. 23: 623-628, 1978.
IAILMAN, R. B., FRYE, G. D., MUELLER, R. A., AND BREESE, G. R.: Change in
brain guanosine 3',5'-monophosphat content. Life Sci. 23: 623-628, 1978.
MAILMAN, R. B., FRYE, G. D., MUELLER, R. A., AND BREESE, G. R.: Chan
brain guanosine 3',5'-monophosphate (GGMP) content by thyrotropin-re
ing hormone. J. Pharmacol. Exp. Ther. 208: 169
- MAILMAN, R. B., FRYE, G. D., MUELLER, R. A., AND BREESE, G. R.: Change in
brain guanosine 3',5'-monophosphate (cGMP) content by thyrotropin-releas-
ing hormone. J. Pharmacol. Exp. Ther. 208: 169-175, 1979.
MAO, C. C., GUID AO, C. C., GUIDOTTI, A., AND COSTA, E.: Interactions between gamma-aminoobutyric acid and guanosine cyclic 3',5'-monophosphate in rat cerebellum.
MOI. Pharmacol. 10: 736-745, 1974a.
AO, C. C., GUIDOTTI, A., AND COSTA, E.:
- **on climbing 300 ms microwave inactivation. J. Neurochem. 28:** Mol. Pharmacol. 10: 736-745, 1974a.

MAO, C. C., GUIDOTTI, A., AND COSTA, E.: The regulation of cyclic guanosine

KAGEYAMA, H., AND KUROSAWA, A.: Long-lasting noobutyric acid and guanosine cyclic 3',5'-monophosphate in rat cerebellum.

Mol. Pharmacol. 10: 736-745, 1974a.

MAO, C. C., GUIDOTTI, A., AND COSTA, E.: The regulation of cyclic guanosine

monophosphate in rat cerebellum MAO, C. C., GUIDOTTI, A., AND COSTA, E.: The regulation of cyclic guanosine
monophosphate in rat cerebellum: possible involvement of putative amino acid
monophosphate in rat cerebellum: possible involvement of putative ami
	-
	-
	- of diazepam. Naunyn Schmiedebergs Arch. Pharmacol. 289: 369-378, 1975a.
AO, C. C., GUIDOTTI, A., AND LANDIS, S.: Cyclic GMP: reduction of cerebellar
concentrations in "nervous" mutant mice. Brain Res. 90: 335-339, 1975b.
A concentrations in "
ARTIN, L. L., AND V
DL-2-amino-7-photover. *In* Excitatory
New York, 1987.
ARWAHA, J., PALM
	- MARTIN, L. L., AND WOOD, P. L.: EIRCCS Of N-methyl-D-aspartate (NML)A) and
DL-2-amino-7-phosphonoheptanoate (AP7) on mouse brain glutamate turn-
over. In Excitatory Amino Acid Transmission, pp. 413-416, Alan R. Liss, Inc., MARWAHA, J., PALMER, M. K., WOODWARD, D. J., HOFFER, B. J., AND FREEDMAN, R.: Electrophysiological evidence for presynaptic actions of phencyclidine
215: 606-613, 1980.
MARWAHA, J., PALMER, M., HOFFER, B., FREEDMAN, R., RI
	- MARWAHA, J.: Enectropyshonogical evidence for presynaptic actions of phencyclidine

	215: 606-613, 1980.

	MARWAHA, J., PALMER, M., HOFFER, B., FREEDMAN, R., RICE, K. C., PAUL, S.,

	AND SKOLNICK, P.: Differential electrophys New Mr. Excitatory Amino Acid Transmission, pp. 413-416, Alan R. Liss, Inc., Norwich, D. J., Horrzel, B. J., Alery Rose, D. Albert NADA or the State of the State of the State of the NMDA or \sim 1. Hornzel, B. J., Alery S
	-
	- McBRIDE, W. J., APRISON, M. H., AND KUSANO, K.: Contents of several amino acids in the cerebellum, brain stem and cerebrum of the "Staggerer," "Weaver," and "Nervous" neurologically mutant mice. J. Neurochem. 26: 867-870,
	- and "Nervous" neurologically mutant mice. J. Neurochem. 26: 867–870, 1976.
CBRIDE, W. J., REA, M. A., AND NADI, N. S.: Effects of 3-acetylpyridine on
the levels of several amino acids in different CNS regions of the rat. N the levels of several amino acids in different CNS regions of the rat. Neury
Res. 3: 793-801, 1978.
McCASLIN, P. P., AND MORGAN, W. W.: Correlation between pentob
suppressed cerebellar cyclic GMP and performance of a swimm
	- phonoheptanoic acid antagonizes N-methyl-D-aspartate-induced elevations N-methyl-D-aspartate-induced elevations of cyclic GMP in vivo in multiple brain areas and chemically-induced seizure cyclic GMP in vivo in multiple br suppresses create and performance of a swimming task. Brain
Res. 374: 367-370, 1986a.
McCASLIN, P. P., AND MORGAN, W. W.: Chronically infused 2-amino-7-phos-
phonoheptanoic acid antagonizes N-methyl-D-aspartate-induced ele
	-
- EXECUTE, J. P., KOUYOUMDJIAN, J. C., HAIDAMOUS, M., LAXCOMBE, C., GRIGNON,

L., AND GONNARD, P.: Effect of intrastriatal glutamic acid injection on rat

cerebellar cyclic GUMP levels. J. Neurochem. 37: 301-303, 1981.

LEHM CCASLIN, P. P., AND MORGAN, W. W.: 2-Amino-7-phosphonoheptanoic acid, a selective N-methyl-D-aspartate antagonist, blocks swim-induced elevation of cerebellar cyclic guanosine monophosphate. Brain Res. 398: 71-74, 1986c. C a selective N-methyl-D-aspartate antagonist, blocks swim-induced elevation of cerebellar cyclic guanosine monophosphate. Brain Res. 398: 71-74, 1986c.
ICCASLIN, P. P., AND MORGAN, W. W.: Cultured cerebellar cells as an in
	- model of excitatory amino acid receptor function. Brain Res. 417: 380–384, 1987.
McCasLIN, P. P., AND MORGAN, W. W.: Increased response of cerebellar cGMP
to kainate but not NMDA or quisqualate following barbital withdrawa CCASLIN, P. P., AND MORGAN, W. W.: Increased response of cerebellar cGMH to kainate but not NMDA or quisqualate following barbital withdrawal from dependent rats. Eur. J. Pharmacol. 173: 127-132, 1989.
EIER, E., DREIJER, J
	- to kanate but not NMDA or quisqualate following barbital withdrawal free dependent rats. Eur. J. Pharmacol. 173: 127-132, 1989.
MEIRE, E., DREIRER, J., AND SCHOUSBOE, A.: GABA induces functionally actively covariantly GABA MEIER, E., DREIJER, J., AND SCHOUSBOE, A.: GABA induces functionally active
low-affinity GABA receptors on cultured cerebellar granule cells. J. Neurochem.
43: 1737-1744, 1984.
MEINECR, D.L., TALLMAN, J., AND RAKIC, P.: GA
	- pyrrolidose-2 (HA-966) using a new animal model. Life Sci. 28: 2865-2868, 1981.
	- tor-like immunoreactivity in rat and monkey cerebellum. Brain Res. 493: 303-319, 1989.
MENON, M. K.: Demonstration of the antimyoclonic effect of 1-hydroxy-3-amino-
pyrrolidone-2 (HA-966) using a new animal model. Life Sci
	- Sistem, M. K.: Demonstration of the antimyoclonic effect of 1-hydroxy-3-amino-
pyrrolidone-2 (HA-966) using a new animal model. Life Sci. 28: 2865-2868,
1981.
MEYERHOFF, J. L., LENOX, R. H., KANT, G. J., SESSIONS, G. R., M
	- MEYERHOFF, J. L., LENOX, R. H., KANT, G. J., SESSIONS, G. R., MOUGEY, E.
H., AND PENNINGTON, L. L.: The effect of locomotor activity on cerebellar
levels of cGMP. Life Sci. 24: 1125-1130, 1979.
MOHLER, H., BURKARD, W. P., levels. of GMP. Life Sci. 24: 1125-1130, 1979.
MOHLER, H., BURKARD, W. P., KELLER, H. H., RICHARDS, J. G., AND HAEPELY,
W.: Benzodiazepine antagonist Ro 15-1788: binding characteristics and inter-
action with drug-induced
	- MOHLER, H., BURKARD, W. P., KELLER, H. H., RICHARDS, J. G., AND HAEPELY,
W.: Benzodiazepine antagonist Ro 15-1788: binding characteristics and inter-
action with drug-induced changes in dopamine turnover and cerebellar cGM COTMAN, C. W.: Two classes of N-methyl-D-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci. USA 85: 9836-9840, 1988.

	USA 85: 9836-9840, 1988.

	CNOAHAN, J.
	- ential distribution and differential regulation by glycine. Proc. Natl. Acad. Sci.
USA 85: 9836-9840, 1988.
ONAHAN, J. B., HANDELMANN, G. E., HOOD, W. F., AND CORDI, A. A.: D-Cycloserine, a positive modulator of the N-meth USA 86: 9836-9840, 1988.
MONAHAN, J. B., HANDELMANN, G. E., HOOD, W. F., AND CORDI, A. A.: Cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, e hances performance of learning tasks in rats. Pharmacol. Cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, en-
	- 1984. 649–653, 1989.

	MORGAN, W. W., AND PFEIL, K. A.: Depression of cerebellar cGMP by barbitu-

	rates. Relationship to locomotor activity. Neuropharmacology 23: 773–777,

	1984.

	MUELLER, R. A., LUNDBERG, D. B. A., FRYE, G. D.,
	-
	-

PHARM
REV

ARMACOLOGI

- WWW.
 ACAL EXECUTE ACAL ACAL EXECUTE ACAL EXECUTE ACAL ACAL EXECUTE ACAL ACAL EXECUTE AND MEDULE OF THE NAHRWOLD, M. L., LUST, W. D., AND PASSONNEAU, J. V.: Halothane-induced alterations of cyclic nucleotide concentration
- acetylpyridiine on several putative neurotransmitter amino acids in the cere-
bellum and medulla of the rat. J. Neurochem. 28: 661-662, 1977.
NAHRWOLD, M. L., LUST, W. D., AND PASSONNEAU, J. V.: Halothane-induced
alteratio
- stumulation of inositol phospholipid hydrolysis by endogeneus ein rat regional brain cyclic nucleotides by thyrotropin-releasing hormone (TRH) and its analog DN-
1417. Jpn. J. Pharmacol. 33: 915–926, 1983.
ICOLETTI, F., WR 1417. Jpn. J. Pharmacol. 33: 915-926, 1983.
NICOLETTI, F., WROBLEWSKI, J. T., AND COSTA, E.: Magnesium ions inhibit the
stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino
acids in primary cultur stimulation of inositol phospholipid hydrolysis by endogenous excitatory amino
acids in primary cultures of cerebellar granule cells. J. Neurochem. 48: 967-
S.
973, 1987.
NOVELLI, A., AND HENNEBERRY, R. C.: GMP synthesis i
-
- neurons is stimulated by glutamate via a Ca²⁺-mediated, differentiation-dependent mechanism. Dev. Brain Res. 34: 307-310, 1987.
NOVELLI, A., NICOLETTI, F., WROBLEWSKI, J. T., ALHO, H., COSTA, E., AND RGUIDOTTI, A.: Excit power. A., NICOLETTI, F., WROBLEWSKI, J. T., ALHO, H., COSTA, E., AND GUIDOTTI, A.: Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells. J. Neurosci. 7: 40–47, 198
- COLDOTTI, A.: Excitatory amino acid receptors coupled with guanylate cyclin primary cultures of cerebellar granule cells. J. Neurosci. 7: 40–47, 1987. NURAMI, S., NAGAI, Y., SAJI, Y., AND NAGAWA, Y.: Increase in rat region in primary cultures of cerebellar granule cells. J. Neurosci. 7: 40–47, 1987.
NURAMI, S., NAGAI, Y., SAJI, Y., AND NAGAWA, Y.: Increase in rat regional brain cyclic nucleotides by thyrotropin-releasing hormone (TRH) and it
-
- cyclic nucleotides by thyrotropin-releasing hormone (TRH) and its analogue
DN-1417. Jpn. J. Pharmacol. 33: 915–926, 1983.
OLSEN, L., AND FUXE, K.: On the projection from the locus coeruleus noradren-
aline neurons: the ce aline neurons: the cerebellar innervation. Brain Res. 28: 165-171, 1971.
OLSEN, R. W., AND MIKOSHIBA, K.: Localization of gamma-aminobutyric acid
receptor binding in the mammalian cerebellum. High levels in granule layer
a receptor binding in the mammalian cerebellum. High levels in granule layer
and depletion in agranular cerebella of mutant mice. J. Neurochem. 30: 1633-
1636, 1978.
Autoradiographic localization of cerebellar excitatory ami
- receptor binding in the mammalian cerebellum. In

and depletion in agranular cerebella of mutant mic

1636, 1978.

1690, J. M. M., GREENAMYRE, J. T., PENNEY,

Autoradiographic localization of cerebellar excitatin

in the m **OLSON, J. M. M., GREENAMYRE, J. T., PENNEY, J. B., AND YOUNG, A. B.:** Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroacience 22: 913-923, 1987.
ONOMIN, E., JULIANO, E.,
-
- in the mouse. Neuroscience 22: 913-923, 1987.

ONGINI, E., IULIANO, E., AND RACAGNI, G.: Cerebellar cyclic GMP and behavioral

effects after acute and repeated administration of benzodiazepines in mice.

Eur. J. Pharmacol. NGINI, E., IULIANO, E., AND RACAGNI, G.: Cerebellar cyclic GMP and behavioral
effects after acute and repeated administration of benzodiazepines in mice.
Eur. J. Pharmacol. 80: 185-190, 1982.
PAEER, F. A., GUMULKA, S. W., OPMEER, F. A., GUMULKA, S. W., DINNENDAHL, V., AND SCHONHOFER, P. S.:
Effects of stimulatory and depressent drugs on cyclic guanosine 3',5'-mono-
phosphate and adenosine 3',5'-monophosphate levels in mouse brain. Naunyn
Sc
- Schmiedebergs Arch. Pharmacol. 292: 259-265, 1976.

PALACIOS, J. M., YOUNG, W. S., AND KUHAR, J.: Autoradiographic localization

of gamma-aminobutyric (GABA) receptors in the rat cerebellum. Proc. Natl.

Acad. Sci. USA 77: Schmiedebergs Arch. Pharmacol. 292: 259-265, 1976. in mammalian cerebellum. Proc. Natl. Acad. Sci. USA 77: 5537-5541, 1980.

PALACIOS, J. M., YOUNG, W. S., AND KUHAR, J.: Autoradiographic localization SCHMIDT, M. J., AND N
-
-
- tissue slices of rat brain. Eur. J. Pharmacol. 32: 375–379, 1975.
URI, S. K., CHOMA, P., AND VOLICER, L.: Cyclic nucleotide levels in the rat
striatum and cerebellum—in vivo effects of dopamine and acetylcholine recep-PURI, S. K., CHOMA, P., AND VOLICER, L.: Cyclic nucleotide levels in the rat Springer, New York, 1974.
Springer, New York, 1974.
LMER, G. C., AND DUSZYNSKI, C. R.: Regional cyclic GMP content in incubat
tissue slices of rat brain. Eur. J. Pharmacol. 32: 375-379, 1975.
R. K., CHOMA, P., AND VOLUER, Springer, New York, 1974.
PALMER, G. C., AND DUSZYNSKI, C. R.: Regional cyclic GMP content in incubated
tissue slices of rat brain. Eur. J. Pharmacol. 32: 375-379, 1975.
PURI, S. K., CHOMA, P., AND VOLICER, L.: Cyclic nucl
- THE, S. K., CHOMA, P., AND VOLICER, L.: Cyclic nucleotide levels in the rat
striatum and cerebellum—in vivo effects of dopamine and acetylcholine recep-
tor agonists and antagonists. Biochem. Pharmacol. 27: 2333–2336, 1978 sumatur and contained
tor agonists and
to morphine-ind
mice: behavioral
111-116, 1979.
co, T. S., CLER, tor agonists and antagonists. Biochem. Pharmacol. 27: 2333-2336, 1978.
RACANI, G., BRUNO, F., IULIANO, E., AND PAOLETTI, R.: Differential sensitivity
to morphine-induced analgesia and motor activity in two inbred strains o
- asset and biochemical correlations. J. Pharmacol. Exp. Ther. 209:
111-116, 1979.
RAO, T. S., CLER, J. A., EMMETT, M. R., MICK, S., IVENGAR, S., COTRERAS, P.
C., AND WOOD, P. L.: Ifenprodil and SL 82.0715 antagonize N-methy
- L.: BMY-14802 antagonizes harmalistic BL 82.0715 antagonize N-methyl-D-spartate (NMDA)-coupled glycine receptor responses in vivo. Eur. J. Pharmacol. 1688: 129-131, 1989.

Mo. T. S., CLER, J. A., EMMETT, M. R., MICK, S., I macol. 168: 129-131, 1989.

No, T. S., CLER, J. A., EMMETT, M. R., MICK, S., IYENGAR, S., AND WOOD, P.

L.: BMY-14802 antagonizes harmaline- and D-serine-induced increases in

modulation of N-methyl-D-aspartate (NMDA) rece macol. 168: 129-131, 1989.

RAO, T. S., CLER, J. A., EMMETT, M. R., MICK, S., IYENGAR, S., AND WOOD, P.

L.: BMY-14802 antagonizes harmaline- and D-serine-induced increases in

mouse cerebellar cyclic GMP: neurochemical ev
- L.: BMY-14802 antagonizes harmaline- and D-serine-induced increases in reaching the mouse cerebellar cyclic GMP: neurochemical evidence for a sigma receptor In modulation of N-methyl-D-aspartate (NMDA) receptor complex in 1990b.
RAO, T. S., CLER, J. A., MICK, S. J., IYENGAR, S., AND WOOD, P. L.: Polyamine WOOD, P. L.: The polyamines, spermine and spermidine, negatively modulate N-methyl-D-aspartate (NMDA) and quisqualate receptor mediated responses in vivo: cerebellar cyclic GMP measurements. Neurochem. Int. 16: 199-206, 19
-
- in vivo: cerebellar cyclic GMP measurements. Neurochem. Int. 16: 199–206,
1990b.
RAO, T. S., CLER, J. A., MICK, S. J., IYENGAR, S., AND WOOD, P. L.: Polyamine
modulation of events mediated by the N-methyl-D-aspartate (NMDA cology, in press, 1990c.

RAO, T. S., CLER, J. A., EMMETT, M. R., MICK, S. J., IVENGAR, S., AND WOOD,

P. L.: Glycine, glycinamide and D-serine act as positive modulators of signal

transduction at the N-methyl-D-aspartate
- transduction at the N-methyl-D-aspartate (NMDA) receptor in vivo: evident for metabolic compartmentation of glycine pools. Neuropharmacology, 1075-1080, 1990d.
1075-1080, 1990d.
107. S., CLER, J. A., MICK, S. J., EMMETT, M for metabolic compartmentation of glycine pools. Neuropharmacology, 28
1075–1080, 1990d.
Ao, T. S., CLER, J. A., MICK, S. J., EMMETT, M. R., IVENGAR, S., AND WOOD
P. L.: 6,7-Dinitroquinozaline-2,3-dione (DNQX) and 6-nitroy **P. L.: 6,7-Dinitroquinoxaline-2,3-dione (DNQX) and 6-nitro,7-cyanoquinoxaline-2,3-dione (CNQX) antagonise responses mediated by N-methyl-D-aspartate (NMDA) and NMDA-associated glycine recognition sites in vivo: cerebellar**
- ine-2,3-dione (CNQX) antagonise responses mediated by N-methyl-D-aspartate (NMDA) and NMDA associated glycine recognition sites in vivo: cerebel-
lar cyclic GMP measurements. Neuropharmacology, 29: 1031-1035, 1990e.
RAO, T
-

of climbing and mossy fiber, and basket and stellate cell inputs to mouse
cerebellar Purkinje cells by novel anti-ischemic agents, ifenprodil and BMY
14802. Life Sci. 47: PL1-PL5, 1990g.
IVENCAP S. AND WOOD, P. L.; Clearni

- alterations of cyclic nucleotide concentrations in three regions of the mouse
nervous system. Anesthesiology 17: 423-427, 1977.
NARUMI, S., NAGAI, Y., SAJI, Y., AND NAGAWA, Y.: Increase in rat regional brain
NARUMI, S., NA of climbing and mossy fiber, and basket and stellate cell inputs to mouse
cerebellar Purkinje cells by novel anti-ischemic agents, ifenprodil and BMY
14802. Life Sci. 47: PL1-PL5, 1990g.
RA0, T. S., CoNTRERAS, P. C., CLER, cerebellar Purkinje cells by novel anti-ischemic agents, ifenprodil and BMY 14802. Life Sci. 47: PL1-PL5, 1990g.
AO, T. S., CONTRERAS, P. C., CLER, J. A., EMMETT, M. R., MICK, S. J., IYENGAR, S., AND WOOD, P. L.: Clozapine 14802. Life Sci. 47: PL1-PL5, 1990g.

AO, T. S., CONTRERAS, P. C., CLER, J. A., EMMETT, M. R., MICK, S. J., IYENGAR, S., AND WOOD, P. L.: Clozapine attenuates harmaline-, netham-

phetamine-, pentylenetetrazol-, and D-seri IYENGAR, S., AND WOOD, P. L.: Clozapine attenuates harmaline-, metham-
phetamine-, pentylenetetrazol-, and D-serine-induced increases in mouse cere-
bellar cyclic guanosine monophosphate (cGMP) levels: evidence for a funct phetamine-, pentylenetetrazol-, and D-serine-induced increases in mouse cerebellar cyclic guanosine monophosphate (CGMP) levels: evidence for a functional modulation of events mediated by the N-methyl-D-aspartate (NMDA) re
	- modulation of events mediated by the N-methyl-D-aspartate (NMDA) receptor complex via a noradrenergic mechanism. Neuropharmacology, in press, 1990h.
AO, T. S., MICK, S. J., CLER, J. A., EMMETT, M. R., DILWORTH, V., IYENGAR tor complex-mediated events by sigma ligands. Mo. T. S., MICK, S. J., CLER, J. A., EMMETT, M. R., DILWORTH, V., IYENGAR, S., CONTRERAS, P. C., AND WOOD, P. L.: Effects of sigma ligands on mouse cerebellar cyclic guanosine RAO, T. S., MICK, S. J., CLER, J. A., EMMETT, M. R., DILWORTH, V., IYENGAR, S., CONTRERAS, P. C., AND DOD, P. L.: Effects of sigma ligands on mouse cerebellar cyclic guanosine monophosphate (cGMP) levels in vivo: further e evidence for a functional modulation of N-methyl-D-aspartate (NMDA) receptor complex-mediated events by sigma ligands. Mol. Pharmacol., in press, 1990i.
1990i.
APPAPORT, M. S., GENTRY, R. T., SCHNEIDER, D. R., AND DOLE, V.
	- Life Sci. 34: 49-56, 1984. **REESE, T. S.: Organization of the cerebellar cerebells** Circle Sci. 34: 49-56, 1984. REESE, T. S.: Organization of the cerebellar cyclic GMP.
REESE, B. F., LANDIS, D. M. D., AND REESE, T. S.: Or
	- RAPPAPORT, M. S., GENTRY, R. T., SCHNEIDER, D. R., AND DOLE, V. P.: Ethanol
effects on harmaline-induced tremor and increase of cerebellar cyclic GMP.
Life Sci. 34: 49-56, 1984.
REESE, B. F., LANDIS, D. M. D., AND REESE, T ERSE, B. F., LANDIS, D. M. D., AND REESE, T. S.: Organization of the cerebelcortex viewed by scanning electron microscopy. Neuroscience 14: 133–1
1985.
CCHARDS, J. G., SCHOCH, P., HARING, P., TACKACS, B., AND MOHLER, CHARD
	- tories viewed by scanning electron microscopy. Neuroscience 14: 133-146, 1985.

	(CHARDS, J. G., SCHOCH, P., HARING, P., TACKACS, B., AND MOHLER, H.:

	CHARDS, J. G., SCHOCH, P., HARING, P., TACKACS, B., AND MOHLER, H.:

	Res
	- 1986.

	RICHARDS, J. G., SCHOCH, P., HARING, P., TACKACS, B., AND MOHLER, H.:

	REGONING GABA_A/benzodiazepine receptors: cellular and subcellular localiza-

	tion in the CNS with monoclonal antibodies. J. Neurosci. 7: 1866– R. F., FETRACK, B., BITTIGER, H., WOOD, F. L., AND WILLIAMS, M.: Benzo-
diazepine interactions with central thyroid-releasing hormone binding sites:
characterization and physiological significance. J. Pharmacol. Exp. Ther.
	- characterization and physiological significance. J. Pharmacol. Exp. Ther. 238:
178–183, 1986.
ROFFER-TARLOV, S., AND SIDMAN, R. L.: Concentrations of glutamic acid in
cerebellar cortex and deep nuclei of normal mice and we 178–183, 1986.

	ROFFER-TARLOV, S., AND SIDMAN, R. L.: Concentrations of glutamic acid in

	cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and

	nervous mutants. Brain Res. 142: 269–283, 1978.

	RUBNN,
	-
	-
	- nervous mutants. Brain Res. 142: 269–283, 1978.

	RUBIN, E. H., AND FERRENDELLI, J. A.: Distribution and regulation of cyclic

	nucleotide levels in cerebellum in vivo. J. Neurochem. 29: 43–51, 1977.

	SCHLICHTER, D. J., DETR SCHMIDT, M. J., AND NADI, N. S.: Cyclic nucleotide accumulation in vitro in the
	- and other glutamate analogues on cyclic nucleotide accumulation in slices of SCHMIDT, M. J., THORNBERRY, J. F., AND MOLLOY, B. B.: Effects of kainate and other glutamate analogues on cyclic nucleotide accumulation in slices of and other glutamate analogues on cyclic mucleotide accumulation in slice
	-
	- SCHMIDT, M. J., THORNBERRY, J. F., AND MOLLOY, B. B.: Effects of kainate
and other glutamate analogues on cyclic nucleotide accumulation in slices of
rat cerebellum. Brain Res. 142: 269-263, 1977.
SERRA, M., CONCAS, A., S monophosphate in monophosphate in monophosphate in monophosphate in monophosphate in mouse brain. J. Biol. Chem. 247: 1121-1124, 1972.
monophosphate in mouse brain. J. Biol. Chem. 247: 1121-1124, 1972.
monophosphate in mou STEINER, A. L., FERRENDELLI, J. A., AND KIPNIS, D. M.: Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3',5'-monophosphate and guanosine 3 cultures of cerebellar granule cells the activation of activation of activation of adenosine $3',5'$ -monophosphate and guanosine monophosphate in mouse brain. J. Biol. Chem. $247:1121-1124,1972$ EREKELY, A. M., GRARACCIA,
	- segional distribution of adenosine 3',5'-monophosphate and guanosine 3',5'
monophosphate in mouse brain. J. Biol. Chem. 247: 1121-1124, 1972.
EEKELY, A. M., BARBACCIA, M. L., ALHO, H., AND COSTA, E.: In primary
cultures of Lettures of cerebellar granule cells the activation of N-methyl-D-aspartate-
sensitive glutamate receptors induces c-fos mRNA expression. Mol. Pharmacol.
35: 401-408, 1989.
LEHMANN, J.: PK 26124 is not a competitive antago
	- rat cerebellum. Brain Res. 142: 269–283, 1977.

	SERRA, M., CONCAS, A., SALIS, M., AND BIGGIO, G.: Increase of cyclic GMP in

	cerebellum by methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate

	CDMOM). Brain Res. 273: sensitive glutamate receptors induces c-fos mRNA expression. Mol. Pharmacol.
35: 401-408, 1989.
M. C., STEEL, D. J., MCPHERSON, S., TAYLOR, C. A., WOOD, P. L., AND
LEHMANN, J.: PK 26124 is not a competitive antagonist at N LEHMANN, J.: PK 26124 is not a competitive antagonist at NMDA-typ receptors. In Excitatory Amino Acid Transmission, pp. 79-82, Alan R. Lis Inc., New York, 1987.
ILEHMANN, J.: PK 26124 is not a competitive antagonist at NMD
	- Inc., New York, 1987.

	UzuNOV, P., AND WEISS, B.: Separation of multiple molecular forms of cyclic

	adenosine-3',5'-monophosphate phosphodiesterase in rat cerebellum by pola-

	crylamide gel electrophoresis. Biochim. Biophy Excretions. In Excitatory Amino Acid Transmission, pp. 79-82, Alan R. Liston, New York, 1987.
Inc., New York, 1987.
20NOV, P., AND WEISS, B.: Separation of multiple molecular forms of cyclical
adenosine-3',5'-monophopesia.
	-
	- Inc., New York, 1987.
UzuNov, P., AND WEBS, B.: Separation of multiple molecular forms of cyclic
UzuNov, P., AND WEBS, B.: Separation of multiple molecular forms of cyclic
crylamide gel electrophoresis. Biochim. Biophys. A 3',5'-monophosphate levels in the rat brain. J. Pharmacol. Exp. There is a streeted by granule cells. J. Neurosci. 7: 65-76, 1987.
DLICER, L., AND HURTER, B. P.: Effects of acute and chronic ethanol administration and wit Example cells. J. Neurosci. 7: 65-76, 1987.

	VOLICER, L., AND HURTER, B. P.: Effects of acute and chronic ethanol administration and withdrawal on adenosine 3',5'-monophosphate and guanosine

	3',5'-monophosphate and guanos
	-
	- tration and withdrawal on adenosine $3',5'$ -monophosphate and guanosine $3',5'$ -monophosphate levels in the rat brain. J. Pharmacol. Exp. Ther. 200:
298-305, 1977.
VOLICER, L., AND KLOSOWICZ, B. A.: Effect of ethanol on gam All Charmacol. 28: 2677-2679, 1971.

	Marmacol. 28: 2677-2679, 1979.

	VOLICER, L., PURI, S. K., AND CHOMA, P.: Cyclic GMP and GABA in rat

	striatum and cerebellum during morphine withdrawal: effect of apomorphine.

	Neuropha
	-
	- striatum and cerebellum during morphine withdrawal: effect of apomorphine.
WALDMAN, S. A., AND MURAD, F.: Cyclic GMP synthesis and function. Phar-
macol. Rev. 39: 163-196, 1987.
WANG, Y., AND LEE, H. K.: Facilitation of ga ALDMAN, S. A., AND MURAD, F.: Cyclic GMP sy
macol. Rev. 39: 163-196, 1987.
ANG, Y., AND LEE, H. K.: Facilitation of gammacology 28: 343-350, 1989.
depression by (+)PCMP and dexorator in the ce
the rat. Neuropharmacology 28 macol. Rev. 39: 163-196, 1987.
WANG, Y., AND LEE, H. K.: Facilitation of gamma-aminobutyric acid-induced
depression by (+)PCMP and dexoxadrol in the cerebellar Purkinje neurons of
the rat. Neuropharmacology 28: 343-350, 19
	- WILKIN, G. P., HUDSON, A. L., HILL, D. R., AND BOWERY, N. G.: Autoradiographic localization of GABA-B receptors in rat cerebellum. Nature (Lond.)
294: 584-587, 1981.
WOJCIK, W. J., AND NEFF, N. H.: Adenosine A1 receptors a
	-
	- WOJCIK, W. A., CAVALLA, D., AND NEFF, N. H.: Co-localized adenosine A1 and

ARMACOLO

j.

-
- gamma-aminobutyric acid B (GABA_B) receptors of cerebellum may share a
common adenylate cyclase catalytic subunit. J. Pharmacol. Exp. Ther. 232:
62-66, 1985.
WONG, E. H. F., KEMP, J. A., PRIESTLEY, T., KNIGHT, A. R., WOO N., AND IVE
aspartate an
600, P. L.:
receptor typ
601, 1983.
000, P. L.: N., AND IVERSON, L. L.: The anticonvulsant MK-801 is a potent N-methyl-D-
aspartate antagonist. Proc. Natl. Acad. Sci. USA 83: 7104-7108, 1986.
WOOD, P. L.: Opiate regulation of CNS dopaminergic pathways: methodology,
ecep
-
- WOOD, P. L.: Opiate regulation of CNS dopaminergic pathways: methodology,
receptor types, regional variations and species differences. Peptides 4: 595-601, 1983.
WOOD, P. L.: CCK modulation of cerebellar afferents: dopamin ment? Progr. Neuropsychopharmacol. Biol. Psychiatry 13: 513-518, 1989.
WOOD, P. L.: Role of nitric oxide in the activation of cerebellar guanylate cyclase
by excitatory amino acid agonists in vivo. In Excitatory Amino Acid Woon, P. L.: Role of nitric oxide in the activation of cerebellar guanylate cyclase
by excitatory amino acid agonists in vivo. In Excitatory Amino Acids 1990, ed.
by B. Meldrum, F. Moroni, J. Simon, and J. Woods, Raven Pre
-
- receptor: P. L., AND ALTAR, C. A.: Dopamine release in vivo from nigrostriata mesolimbic, and mesocortical neurons: utility of 3-methoxytyramine measure ments. Pharmacol. Rev. 40: 163-187, 1988.
CoD, P. L., AND RAO, T. S.: mesolimbic, and mesocortical neurons: utility of 3-methoxy
ments. Pharmacol. Rev. 40: 163-187, 1988.
00D, P. L., AND RAO, T. S.: NMDA-coupled and uncouple
receptor: preliminary in vivo evidence for PCP receptor s
ropsychop mesolimbic, and mesocortical neurons: utility of 3-methoxytyramine measurements. Pharmacol. Rev. 40: 163-187, 1988.
WOOD, P. L., AND RAO, T. S.: NMDA-coupled and uncoupled forms of the PCP
receptor: preliminary in vivo evi
- **levels by excitations:** in vivo evidence for PCP receptor subtypes. Prog. Neuropsychopharmacol. Biol. Psychiatry 13: 519-523, 1989. And DA, quisqualate and competible by excitatory amino acid receptors: role of NMDA, quis **WOOD, P. L., AND RAO, T. S.: A review of in vivo modulation of cerebellar cGMP**
 WOOD, P. L., AND RAO, T. S.: A review of in vivo modulation of cerebellar cGMP
 levels by excitatory amino acid receptors: role of NMDA, **rate and mouses:** role of NMDA, quisqualate and kainate subtypes. Prog. Neuropsychopharmacol. Biol. Psychiatry, in press, 1990.
WOOD, P. L., AND RICHARD, J. W.: Morphine and nigrostriatal function in the rat and mouse: ro
- **215: 1305-1310, 1982.** Neuropsychopharmacol. Blol. Psychiatry, in press, 1990.
Wood, P. L., AND RICHARD, J. W.: Morphine and nigrostriatal function in the rat and mouse: role of nigral and striatal opiate receptors. Neuro
- **example and mouse: role of nigral and striatal opiate receptors. Neuropharmacolog 215: 1305–1310, 1982.**
**2005, P. L., RICHARD, J. W., PILAPIL, C., AND NAIR, N. P. V.: Antagonists of the secitatory amino acids and cyclic P. L., RICHAPLE, C., AND NAIR, N. P. V.: Antagonists of WOOD, P. L., RICHAPLE, C., AND NAIR, N. P. V.: Antagonists of excitatory amino acids and cyclic guanosine monophosphate in cerebellum.
Neuropharmacology 21: 1235–123**
- **the nigrostriatal pathway: lack of tolerance monophosphate in cereb Neuropharmacology 21: 1235-1238, 1982.**
 Neuropharmacology 21: 1235-1238, 1982.
 Nouropharmacology 21: 125.5-1238, 1984a.
 Biol. Psychiatry 8: 779-7 excitatory amino acids and cyclic guanosine monophosphate in cerebellum.

Neuropharmacology 21: 1235-1238, 1982.

WOOD, P. L., ETIENNE, P., LAL, S., AND NAIR, N. P. V.: Benzodiazepines and

the nigrostriated pathway: lack
-
- the nigrostriatal pathway: lack of tolerance. Prog. Neuropsychopharmacol.

Biol. Psychiatry 8: 779–783, 1984a.

WOOD, P. L., LOO, P., BRAUNWALDER, A., AND CHENEY, D. L.: In vitro

characterization of benzodiazepine agonist
- OOD, P. L., LOO, P., BRAUNWALDER, A., AND CHENEY, D. L.: In vitcharacterization of agonist, antagonist, inverse agonist and agonist/antagonibenzodiazepines. Prog. Neuropsychopharmacol. Biol. Psychiatry 8: 785-78

1984c.

O **IPERACE, B., AND CHENEY, D. L.: Benzodiazepine receptor multiplicity: pharmacological comparison of a full agonist, partial agonist and agonist/antagonist.
** *In* **Proceedings of the IVth World Congress of Biological Psychi**
- macological comparison of a full agonist, partial agonist and agonist/antagonin In Proceedings of the IVth World Congress of Biological Psychiatry, pp. 278, Elsevier, Amsterdam, 1986.
278, Elsevier, Amsterdam, 1986.
J.: An In Proceedings of the IVth World Congress of Biological Psychiatry, pp. 276-278, Elsevier, Amsterdam, 1986.

COD, P. L., STEEL, D., McPHERSON, S. E., CHENEY, D. L., AND LEHMANN,

J.: Antagonism of N-methyl-D-aspartate (NMD **278, Eisevier, Amsterdam, 1986.**
 Coop, P. L., STEEL, D., MCPHERSON, S. E., CHENEY, D. L., AND LEHMANN,
 J.: Antagonism of N-methyl-D-aspartate (NMDA) evoked increases in cerebel-
 lar cGMP and striatal ACh release b
- CGMP IN THE CEREBELLUM 25 EREBELLUM
WOOD, P. L., KIM, H. S., CHENEY, D. L., COSI, C., MARIEN, M., RAO, T. S.,
AND MARTIN, L. L.: Constant infusion of [¹²C₈]glucose: simultaneous measure-**AND MARTIN, L. L.: CONSTANTIN, L. L.: COSI, C., MARIEN, M., RAO, T. S.,**

AND MARTIN, L. L.: Constant infusion of $[{}^{13}C_8]$ glucose: simultaneous measure-

ment of GABA and glutamate turnover in defined rat brain region AND MARTIN, L. L.: Constant infusion of $[^{12}C_6]$ glucose: simultaneous measurement of GABA and glutamate turnover in defined rat brain regions of single animals. Neuropharmacology $27: 669-676$, 1988a.
Con, P. L., STEEL WOOD, P. L., KIM, H. S., CHENEY, D. L., COSI, C., MARIEN, M., RAO, T. S.,
AND MARTIN, L. L.: Constant infusion of $[^{12}C_6]$ glucose: simultaneous measurement of GABA and glutamate turnover in defined rat brain regions of INHETIN, L. L.: Constant infusion of [¹³C₈] glucose: simultaneous measurement of GABA and glutamate turnover in defined rat brain regions of single animals. Neuropharmacology 27: 669–676, 1988a.

cono, P. L., Sregat, D
	-
	- WOOD, P. L., STEEL, D. J., KIM, H. S., PETRACK, B., AND ALTAR, C. A.: Inhibition of climbing and mossy fiber input to mouse cerebellar Purkinje cells by cholecystokinin. J. Pharmacol. Exp. Ther. 244: 58–62, 1988b.
WOOD, P. potentiation of ongoing neuronal activity as evidenced by increased cerebellar by cholecystokinin. J. Pharmacol. Exp. Ther. 244: 58-62, 1988b.
WOOD, P. L., EMMETT, M. R., RAO, T. S., MICK, S., CLER, J., AND IYENGAR, S.:
In vivo modulation of the N-methyl-D-aspartate receptor complex by D-serine:
pote
	- potentiation of ongoing neuronal activity as evidenced by in
cyclic GMP. J. Neurochem. 53: 979-981, 1989a.
000, P. L., KIM, H. S., BOYAR, W. C., AND HUTCHINSON,
nigrostriatal release of dopamine in the rat by adenosine rec COOD, P. L., KIM, H. S., BOYAR, W. C., AND HUTCHINSON, A.: Inhibition of nigrostriatal release of dopamine in the rat by adeenosine receptor agonists: A1 receptor mediation. Neuropharmacology 28: 21-25, 1989b.
Woon, P. L.,
	- nigrostriatal release of dopamine in the rat by adenosine receptor agonists: *k* receptor mediation. Neuropharmacology 28: 21-25, 1989b.
000, P. L., RAO, T. S., IYENGAR, S., LANTHORN, T., MONAHAN, J., CORDI, S. NON E. WASQ receptor mediation. Neuropharmacology 28: 21-25, 1989b.

	COD, P. L., RAO, T. S., IYENGAR, S., LANTHORN, T., MONAHAN, J., COR

	SUN, E., VASQUEZ, M., GRAY, N., AND CONTRERAS, P.: A review of the in

	and in vivo neurochemical WOOD, P. L., RAO, T. S., IYENGAR, S., LANTHORN, T., MONAHAN, J., CORDI, J., SUN, E., VASQUEZ, M., GRAY, N., AND CONTRERAS, P.: A review of the in vitro and in vivo neurochemical characterization of the NMDA/PCP/glycine/ion
	- SUN, E., VASQUEZ, M., GRAY, N., AND CONTRERAS, P.: A review of the in vivo and in vivo neurochemical characterization of the NMDA/PCP/glycine/ichannel receptor macrocomplex. Neurochem. Res. 14: 217-229, 1989c. OOD, P. L., WOOD, P. L., EMMETT, M. R., RAO, T. S., MICK, S., CLER, J., OEI, E., AND IYENGAR, S.: In vivo antagonism of agonist actions at NMDA and NMDA-associated glycine receptors in mouse cerebellum: studies of HA-966. Neuro-pharma
	- **EXECUTE THEORY INTERFORM CONSTRESS ASSOCIATED FRAMELY PRESCUTE RECONSTRENT OF DRAMETT, M. R., RAO, T. S., MICK, S., CLER, J. A., AND IYENGAR, O.D, P. L., EMMETT, M. R., RAO, T. S., MICK, S., CLER, J. A., AND IYENGAR, S.:** pharmacology 29: 675-679, 1989d.
WOOD, P. L., EMMETT, M. R., RAO, T. S., MICK, S., CLER, J. A., AND IYENGAR,
S.: In vivo cerebellar CGMP responses: a model system for studies of the
NMDA-associated glycine receptor. In Neu
	- NMDA-associated glycine receptor. *In* Neurotoxicity of Excitatory Amino
Acids, ed. by A. Guidotti, pp. 223-234, Pergamon Press, New York, 1990a.
000, P. L., EMMETT, M. R., RAO, T. S., CLER, J., MICK, S., AND IYENGAR, S.
I WOOD, P. L., EMMETT, M. R., RAO, T. S., CLER, J., MICK, S., AND IYENGAR, S.:
Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-
, kainate-, harmaline, and pentylenetetrazole-dependent increases
	- Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-
, kainate-, harmaline, and pentylenetetrazole-dependent increases in cerebellar
cyclic GMP in vivo. J. Neurochem. 55: 346-348, 1990b.
WROBLEWES
- characterization of benzodiazepine agonists, antagonists, inverse agonists and

WOOD, P. BRAUNWALDER, A., AND CHENEY, D. L.: In vitro WROBLEWSKI, J. T., FADDA, E., MAZZETTA, J., LAZAREWICZ, J. W., AND COSTA,

COOD, P., BRA E.: Glycine and D-serine act as positive modulator of signal transduction at two subclasses of excitatory amino acid receptors. Proc. Natl. Acad. Sci. USA 84: 5068-5072, 1987.
ROBLEWSKI, J. T., FADDA, E., MAZZETTA, J., LAZ n-methyl-D-aspartate sensitive glutamate receptors in cultured cerebellar gras-

WROBLEWSKI, J. T., FADDA, E., MAZZETTA, J., LAZAREWICZ, J. W., AND COSTA,

E.: Glycine and D-series at a positive glutamate receptors in cult
	-
	- E.: Glycine and D-serine act as positive modulators of signal transduction at

	N-methyl-D-aspartate sensitive glutamate receptors in cultured cerebellar gran-

	de cells. Neuropharmacology 26: 447-452, 1989.

	YI, S. J., SNE YI, S. J., SNELL, L. D., AND JOHNSON, K. M.: Linkage between phencyclidine (PCP) and N-methyl-D-aspartate (NMDA) receptors in the cerebellum. Brain Res. 445: 147-151, 1988.
YOUNG, A. B., OSTER-GRANITE, M. L., HERNDON, R. M **ZETTLER, G.: ISONSTANTER, M. L., HERNDON, R. M., AND SNYDER, S. H.:**

	Glutamic acid: selective depletion by viral induced granule cell loss in hamster cerebellum. Brain Res. 73: 1-13, 1974.
 ZETTLER, G.: Cholecystokinin
	- YOUNG, A. B., OSTER-GRANITE, M. L., HERNDON, R. M., AND SNYDER, S. H.:

	Glutamic acid: selective depletion by viral induced granule cell loss in hamster

	cerebellum. Brain Res. 73: 1-13, 1974.

	ZETTLER, G.: Cholecystokinin
	- and clonazepam. Neuropharmacology 22: 757-766, 1983.
ZWILLER, J., GHANDOUR, M. S., REVEL, M. O., AND BASSET, P.: Immunohisto-
chemical localization of guanylate cyclase in rat cerebellum. Neurosci. Lett.
23: 31-36. 1981.

CAL REVIEW

PHARMACOLOGIO